Suppr超能文献

当前临床自然语言处理系统在处理出院小结中缩写词方面的比较研究。

A comparative study of current Clinical Natural Language Processing systems on handling abbreviations in discharge summaries.

作者信息

Wu Yonghui, Denny Joshua C, Rosenbloom S Trent, Miller Randolph A, Giuse Dario A, Xu Hua

机构信息

Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, TN, USA.

出版信息

AMIA Annu Symp Proc. 2012;2012:997-1003. Epub 2012 Nov 3.

Abstract

Clinical Natural Language Processing (NLP) systems extract clinical information from narrative clinical texts in many settings. Previous research mentions the challenges of handling abbreviations in clinical texts, but provides little insight into how well current NLP systems correctly recognize and interpret abbreviations. In this paper, we compared performance of three existing clinical NLP systems in handling abbreviations: MetaMap, MedLEE, and cTAKES. The evaluation used an expert-annotated gold standard set of clinical documents (derived from from 32 de-identified patient discharge summaries) containing 1,112 abbreviations. The existing NLP systems achieved suboptimal performance in abbreviation identification, with F-scores ranging from 0.165 to 0.601. MedLEE achieved the best F-score of 0.601 for all abbreviations and 0.705 for clinically relevant abbreviations. This study suggested that accurate identification of clinical abbreviations is a challenging task and that more advanced abbreviation recognition modules might improve existing clinical NLP systems.

摘要

临床自然语言处理(NLP)系统可在多种场景下从叙述性临床文本中提取临床信息。以往研究提及了处理临床文本中缩写词的挑战,但对于当前NLP系统正确识别和解释缩写词的能力却鲜有深入探讨。在本文中,我们比较了三种现有的临床NLP系统在处理缩写词方面的性能:MetaMap、MedLEE和cTAKES。评估使用了一组由专家标注的临床文档金标准集(源自32份去标识化的患者出院小结),其中包含1112个缩写词。现有的NLP系统在缩写词识别方面表现欠佳,F值范围为0.165至0.601。MedLEE在所有缩写词上取得了最佳F值0.601,在临床相关缩写词上取得了0.705的F值。本研究表明,准确识别临床缩写词是一项具有挑战性的任务,更先进的缩写词识别模块可能会改进现有的临床NLP系统。

相似文献

6
A Preliminary Study of Clinical Abbreviation Disambiguation in Real Time.实时临床缩写词消歧的初步研究
Appl Clin Inform. 2015 Jun 3;6(2):364-74. doi: 10.4338/ACI-2014-10-RA-0088. eCollection 2015.

引用本文的文献

2
4
Clinical concept recognition: Evaluation of existing systems on EHRs.临床概念识别:对电子健康记录现有系统的评估。
Front Artif Intell. 2023 Jan 13;5:1051724. doi: 10.3389/frai.2022.1051724. eCollection 2022.
7
Natural Language Processing in Nephrology.肾病学中的自然语言处理。
Adv Chronic Kidney Dis. 2022 Sep;29(5):465-471. doi: 10.1053/j.ackd.2022.07.001.

本文引用的文献

6
Natural language processing: an introduction.自然语言处理:入门。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):544-51. doi: 10.1136/amiajnl-2011-000464.
7
The Yale cTAKES extensions for document classification: architecture and application.耶鲁 CTakes 扩展用于文档分类:架构与应用。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):614-20. doi: 10.1136/amiajnl-2011-000093. Epub 2011 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验