Suppr超能文献

使用自然语言处理技术从放射学记录中发现外周动脉疾病病例。

Discovering peripheral arterial disease cases from radiology notes using natural language processing.

作者信息

Savova Guergana K, Fan Jin, Ye Zi, Murphy Sean P, Zheng Jiaping, Chute Christopher G, Kullo Iftikhar J

机构信息

Division of Biomedical Statistics and Informatics.

出版信息

AMIA Annu Symp Proc. 2010 Nov 13;2010:722-6.

Abstract

As part of the Electronic Medical Records and Genomics Network, we applied, extended and evaluated an open source clinical Natural Language Processing system, Mayo's Clinical Text Analysis and Knowledge Extraction System, for the discovery of peripheral arterial disease cases from radiology reports. The manually created gold standard consisted of 223 positive, 19 negative, 63 probable and 150 unknown cases. Overall accuracy agreement between the system and the gold standard was 0.93 as compared to a named entity recognition baseline of 0.46. Sensitivity for the positive, probable and unknown cases was 0.93-0.96, and for the negative cases was 0.72. Specificity and negative predictive value for all categories were in the 90's. The positive predictive value for the positive and unknown categories was in the high 90's, for the negative category was 0.84, and for the probable category was 0.63. We outline the main sources of errors and suggest improvements.

摘要

作为电子病历与基因组学网络的一部分,我们应用、扩展并评估了一个开源临床自然语言处理系统——梅奥临床文本分析与知识提取系统,用于从放射学报告中发现外周动脉疾病病例。人工创建的金标准包括223例阳性、19例阴性、63例可能病例和150例未知病例。与命名实体识别基线的0.46相比,该系统与金标准之间的总体准确性一致性为0.93。阳性、可能和未知病例的敏感性为0.93 - 0.96,阴性病例的敏感性为0.72。所有类别的特异性和阴性预测值均在90%以上。阳性和未知类别的阳性预测值在90%以上,阴性类别的阳性预测值为0.84,可能类别的阳性预测值为0.63。我们概述了主要误差来源并提出了改进建议。

相似文献

引用本文的文献

2
Comprehensive Review of Natural Language Processing (NLP) in Vascular Surgery.血管外科中自然语言处理(NLP)的综合综述
EJVES Vasc Forum. 2023 Sep 17;60:57-63. doi: 10.1016/j.ejvsvf.2023.09.002. eCollection 2023.
3
Artificial Intelligence to Improve Patient Understanding of Radiology Reports.人工智能提高患者对放射科报告的理解。
Yale J Biol Med. 2023 Sep 29;96(3):407-417. doi: 10.59249/NKOY5498. eCollection 2023 Sep.

本文引用的文献

6
Recognizing obesity and comorbidities in sparse data.在稀疏数据中识别肥胖及合并症。
J Am Med Inform Assoc. 2009 Jul-Aug;16(4):561-70. doi: 10.1197/jamia.M3115. Epub 2009 Apr 23.
10
Identifying patient smoking status from medical discharge records.从医疗出院记录中识别患者的吸烟状况。
J Am Med Inform Assoc. 2008 Jan-Feb;15(1):14-24. doi: 10.1197/jamia.M2408. Epub 2007 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验