Lu Cheng, Mahmood Muhammad, Jha Naresh, Mandal Mrinal
Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada.
Anal Quant Cytopathol Histpathol. 2012 Dec;34(6):296-308.
To develop a computer-aided robust nuclei segmentation technique for quantitative histopathological image analysis.
A robust nuclei segmentation technique for histopathological image analysis is proposed. The proposed technique uses a hybrid morphological reconstruction module to reduce the intensity variation within the nuclei regions and suppress the noise in the image. A local region adaptive threshold selection module based on local optimal threshold is used to segment the nuclei. The technique incorporates domain-specific knowledge of skin histopathological images for more accurate segmentation results.
The technique is compared to the manually labeled nuclei locations and nuclei boundaries for the performance evaluations. On different histopathological images of skin epidermis with complex background, containing more than 3000 nuclei, the technique provides a good nuclei detection performance: 88.11% sensitivity rate, 80.02% positive prediction rate and only 5.34% under-segmentation rate compared to the manually labeled nuclei locations. Compared to the 110 manually segmented nuclei regions, the proposed technique provides a good segmentation performance (in terms of the nucleus area, perimeter, and form factor).
The proposed technique is able to provide more accurate segmentation performance compared to the existing techniques and can be employed for quantitative analysis of the histopathological images.
开发一种用于定量组织病理学图像分析的计算机辅助稳健细胞核分割技术。
提出了一种用于组织病理学图像分析的稳健细胞核分割技术。所提出的技术使用混合形态学重建模块来减少细胞核区域内的强度变化并抑制图像中的噪声。基于局部最优阈值的局部区域自适应阈值选择模块用于分割细胞核。该技术纳入了皮肤组织病理学图像的特定领域知识,以获得更准确的分割结果。
将该技术与手动标记的细胞核位置和细胞核边界进行比较以进行性能评估。在具有复杂背景、包含超过3000个细胞核的不同皮肤表皮组织病理学图像上,与手动标记的细胞核位置相比,该技术提供了良好的细胞核检测性能:灵敏度率为88.11%,阳性预测率为80.02%,分割不足率仅为5.34%。与110个手动分割的细胞核区域相比,所提出的技术提供了良好的分割性能(在细胞核面积、周长和形状因子方面)。
与现有技术相比,所提出的技术能够提供更准确的分割性能,可用于组织病理学图像的定量分析。