Department of Chemistry and Biochemistry, Florida International University, Florida 33199, United States.
J Phys Chem A. 2013 Jan 31;117(4):741-55. doi: 10.1021/jp3091045. Epub 2013 Jan 22.
Ab initio CCSD(T)/cc-pVTZ(CBS)//B3LYP/6-311g(d,p) calculations of the C(5)H(6)N potential energy surface have been performed to investigate the reaction mechanism of cyano radical (CN) with C(4)H(6) isomers 1- and 2-butyne and 1,2-butadiene. They were followed by RRKM calculations of the reaction rate constants and product branching ratios under single-collision conditions in the 0-5 kcal/mol collision energy range. With the assumption of equal probabilities of the barrierless terminal and central addition of the cyano radical to 1-butyne, 2-cyano-1,3-butadiene + H, and cyanoallene + CH(3) are predicted to be the major reaction products with a branching ratio of ∼2:1. The terminal CN addition to C(1) favors the formation of cyanoallene + CH(3), whereas the central CN addition to C(2) enhances the formation of 2-cyano-1,3-butadiene + H. For the CN + 2-butyne reaction, the dominant product is calculated to be 1-cyano-prop-1-yne + CH(3), and the CH(3) loss occurs directly from the initial adduct formed by the barrierless CN addition to either of the two acetylenic carbon atoms. A small amount of the H loss product, 3-cyano-1,2-butadiene (1-cyano-1-methylallene), can be also formed as was observed in earlier crossed molecular beam experiments. Three different products are predicted for the CN + 1,2-butadiene reaction, which also occurs without entrance barriers. If various initial complexes formed by the CN addition to C(1), C(2), C(3), or to the C═C double bonds in 1,2-butadiene are produced in the entrance channel with equal probabilities, the dominating product (70-60%) is 2-cyano-1,3-butadiene + H, and the other significant products include 1-cyano-prop-3-yne + CH(3) (19-25%) favored by the initial CN addition to C(1) and cyanoallene + CH(3) (11-15%) preferred for the CN addition to C(3). The H abstraction HCN + C(4)H(5) products may also be formed either from the initial CN addition adducts through a CN roaming mechanism or via certain trajectories directly from the initial reactants, but their yield is not expected to be significant, at least at low temperatures. The energetics, mechanisms, and product branching ratios of the cyano radical reactions with various C(4)H(6) isomers and their analogous isoelectronic C(2)H + C(4)H(6) reactions have been summarized and compared.
已进行了从头算 CCSD(T)/cc-pVTZ(CBS)//B3LYP/6-311g(d,p) 计算,以研究氰基自由基 (CN) 与 C(4)H(6) 异构体 1-和 2-丁炔和 1,2-丁二烯的反应机理。随后,在 0-5 kcal/mol 碰撞能范围内,在单次碰撞条件下,通过 RRKM 计算了反应速率常数和产物分支比。假设氰基自由基无势垒的末端和中心加成到 1-丁炔的概率相等,预测主要反应产物为 2-氰基-1,3-丁二烯+H 和氰烯+CH(3),分支比约为 2:1。CN 对 C(1)的末端加成有利于形成氰烯+CH(3),而 CN 对 C(2)的中心加成则增强了 2-氰基-1,3-丁二烯+H 的形成。对于 CN+2-丁炔反应,计算出主要产物为 1-氰基-丙-1-炔+CH(3),并且 CH(3)的损失直接来自于无势垒 CN 加成到两个炔碳原子之一形成的初始加合物。少量的 H 损失产物 3-氰基-1,2-丁二烯(1-氰基-1-甲基烯)也可以形成,这在早期的交叉分子束实验中已经观察到。CN+1,2-丁二烯反应也可预测三种不同产物,该反应也无入口势垒。如果 CN 加成到 C(1)、C(2)、C(3)或 1,2-丁二烯中的 C═C 双键形成的各种初始复合物以相等的概率在入口通道中生成,则主要产物(70-60%)为 2-氰基-1,3-丁二烯+H,其他显著产物包括 1-氰基-丙-3-炔+CH(3)(19-25%),这是由 CN 优先加成到 C(1)形成的,以及氰烯+CH(3)(11-15%),这是由 CN 优先加成到 C(3)形成的。通过 CN 漫游机制或通过初始反应物的某些轨迹,也可以从初始 CN 加成加合物形成 H 提取产物 HCN+ C(4)H(5),但预计其产率不会很高,至少在低温下不会很高。总结并比较了氰基自由基与各种 C(4)H(6)异构体及其类似等电子 C(2)H+ C(4)H(6)反应的反应能、机理和产物分支比。