Suppr超能文献

使用微流控免疫分析装置在模拟心肺旁路过程中对炎症生物标志物进行连续监测 - 一项初步研究。

Continuous monitoring of inflammation biomarkers during simulated cardiopulmonary bypass using a microfluidic immunoassay device - a pilot study.

机构信息

Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.

出版信息

Artif Organs. 2013 Jan;37(1):E9-E17. doi: 10.1111/aor.12021.

Abstract

This work demonstrates the use of a continuous online monitoring system for tracking systemic inflammation biomarkers during cardiopulmonary bypass (CPB) procedures. The ability to monitor inflammation biomarkers during CPB will allow surgical teams to actively treat inflammation and reduce harmful effects on postoperative morbidity and mortality, enabling improved patient outcomes. A microfluidic device has been designed which allows automation of the individual processing steps of a microbead immunoassay to allow continuous tracking of antigen concentrations. Preliminary experiments have demonstrated that the results produced by the microimmunoassay are comparable to results produced from a standard enzyme-linked immunosorbent assay (r = 0.98). Additionally, integration of the assay with a simulated CPB circuit has been demonstrated with temporal tracking of C3a concentrations within blood continuously sampled from the circuit. The presented work describes the motivation, design challenges, and preliminary experimental results of this project.

摘要

这项工作展示了一种连续在线监测系统在体外循环 (CPB) 过程中跟踪系统性炎症生物标志物的应用。在 CPB 过程中监测炎症生物标志物的能力将使外科团队能够积极治疗炎症,降低对术后发病率和死亡率的有害影响,从而改善患者的预后。已经设计了一种微流控装置,该装置允许微珠免疫测定的各个处理步骤自动化,从而能够连续跟踪抗原浓度。初步实验表明,微免疫测定产生的结果与标准酶联免疫吸附测定 (r = 0.98) 产生的结果相当。此外,还通过连续从模拟 CPB 回路中采样的血液中对 C3a 浓度进行时间跟踪,证明了该测定与模拟 CPB 回路的集成。本文介绍了该项目的动机、设计挑战和初步实验结果。

相似文献

2
Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery.
Lab Chip. 2011 Sep 7;11(17):2858-68. doi: 10.1039/c1lc20080a. Epub 2011 Jul 12.
3
4
Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay.
Microfluid Nanofluidics. 2010 Aug 1;9(2-3):253-265. doi: 10.1007/s10404-009-0543-1.
8
Hemoadsorption to Reduce Plasma-Free Hemoglobin During Cardiac Surgery: Results of REFRESH I Pilot Study.
Semin Thorac Cardiovasc Surg. 2019 Winter;31(4):783-793. doi: 10.1053/j.semtcvs.2019.05.006. Epub 2019 May 11.
10
Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study.
Clin J Am Soc Nephrol. 2008 May;3(3):665-73. doi: 10.2215/CJN.04010907. Epub 2008 Mar 12.

引用本文的文献

1
Simultaneous Control of Venous Reservoir Level and Arterial Flow Rate in Cardiopulmonary Bypass With a Centrifugal Pump.
IEEE J Transl Eng Health Med. 2023 Jun 30;11:435-440. doi: 10.1109/JTEHM.2023.3290951. eCollection 2023.
2
Integrated Bioluminescent Immunoassays for High-Throughput Sampling and Continuous Monitoring of Cytokines.
Anal Chem. 2023 Jun 13;95(23):8922-8931. doi: 10.1021/acs.analchem.3c00745. Epub 2023 May 30.
3
Analytical methods of antibody surface coverage and orientation on bio-functionalized magnetic beads: application to immunocapture of TNF-α.
Anal Bioanal Chem. 2021 Oct;413(25):6425-6434. doi: 10.1007/s00216-021-03608-w. Epub 2021 Aug 17.
4
Fully integrated wearable impedance cytometry platform on flexible circuit board with online smartphone readout.
Microsyst Nanoeng. 2018 Jul 30;4:20. doi: 10.1038/s41378-018-0019-0. eCollection 2018.
5
Microdevice Development and Artificial Organs.
Artif Organs. 2019 Jan;43(1):17-20. doi: 10.1111/aor.13288. Epub 2018 Sep 27.
6
Smart Surgical Catheter for C-Reactive Protein Sensing Based on an Imperceptible Organic Transistor.
Adv Sci (Weinh). 2018 May 2;5(6):1701053. doi: 10.1002/advs.201701053. eCollection 2018 Jun.
7
Immunomagnetic nanoparticle-based assays for detection of biomarkers.
Int J Nanomedicine. 2013;8:4543-52. doi: 10.2147/IJN.S51893. Epub 2013 Nov 22.

本文引用的文献

1
Automated microfluidic processing platform for multiplexed magnetic bead immunoassays.
Microfluid Nanofluidics. 2012 Oct;13(4):603-612. doi: 10.1007/s10404-012-0980-0.
2
Current ultrafiltration techniques before, during and after pediatric cardiopulmonary bypass procedures.
Perfusion. 2012 Sep;27(5):438-46. doi: 10.1177/0267659112450061. Epub 2012 Jun 1.
3
Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery.
Lab Chip. 2011 Sep 7;11(17):2858-68. doi: 10.1039/c1lc20080a. Epub 2011 Jul 12.
4
Bead packing and release using flexible polydimethylsiloxane membrane for semi-continuous biosensing.
Artif Organs. 2011 Jul;35(7):E136-44. doi: 10.1111/j.1525-1594.2011.01240.x. Epub 2011 Jun 9.
5
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane).
Anal Chem. 1998 Dec 1;70(23):4974-84. doi: 10.1021/ac980656z.
7
The relationship between inflammatory activation and clinical outcome after infant cardiopulmonary bypass.
Anesth Analg. 2010 Nov;111(5):1244-51. doi: 10.1213/ANE.0b013e3181f333aa. Epub 2010 Sep 9.
8
Autonomous magnetically actuated continuous flow microimmunofluorocytometry assay.
Microfluid Nanofluidics. 2010 Aug 1;9(2-3):253-265. doi: 10.1007/s10404-009-0543-1.
9
Early blood biomarkers predict organ injury and resource utilization following complex cardiac surgery.
J Surg Res. 2011 Jun 15;168(2):168-72. doi: 10.1016/j.jss.2009.09.023. Epub 2009 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验