Suppr超能文献

解决汉诺塔问题——黏菌如何高效构建运输网络。

Solving the Towers of Hanoi - how an amoeboid organism efficiently constructs transport networks.

机构信息

Behaviour and Genetics of Social Insects Laboratory, School of Biological Sciences, University of Sydney, NSW 2006, Australia.

出版信息

J Exp Biol. 2013 May 1;216(Pt 9):1546-51. doi: 10.1242/jeb.081158. Epub 2013 Jan 10.

Abstract

Many biological systems require extensive networks to transport resources and information. Biological networks must trade-off network efficiency with the risk of network failure. Yet, biological networks develop in the absence of centralised control from the interactions of many components. Moreover, many biological systems need to be able to adapt when conditions change and the network requires modification. We used the slime mould Physarum polycephalum (Schwein) to study how the organism adapts its network after disruption. To allow us to determine the efficiency of the constructed networks, we used a well-known shortest-path problem: the Towers of Hanoi maze. We first show that while P. polycephalum is capable of building networks with minimal length paths through the maze, most solutions are sub-optimal. We then disrupted the network by severing the main connecting path while opening a new path in the maze. In response to dynamic changes to the environment, P. polycephalum reconstructed more efficient solutions, with all replicates building networks with minimal length paths through the maze after network disruption. While P. polycephalum altered some of its existing network to accommodate changes in the environment, it also reconstructed large sections of the network from scratch. We compared the results obtained from P. polycephalum with those obtained using another distributed biological system: ant colonies. We hypothesise that network construction in ants hinges upon stronger positive feedback than for slime mould, ensuring that ants converge more accurately upon the shortest path but are more constrained by the history of their networks in dynamic environments.

摘要

许多生物系统需要广泛的网络来传输资源和信息。生物网络必须在网络效率与网络故障风险之间进行权衡。然而,生物网络是在没有来自许多组件相互作用的集中控制的情况下发展起来的。此外,许多生物系统需要能够在条件发生变化且网络需要修改时进行适应。我们使用多头绒泡菌(Schwein)来研究生物体在受到干扰后如何调整其网络。为了能够确定构建网络的效率,我们使用了一个著名的最短路径问题:汉诺塔迷宫。我们首先表明,尽管多头绒泡菌能够构建通过迷宫的最短路径网络,但大多数解决方案都不是最优的。然后,我们通过切断主要连接路径并在迷宫中开辟新路径来破坏网络。为了应对环境的动态变化,多头绒泡菌重建了更有效的解决方案,所有复制体在网络中断后都通过迷宫构建了最短路径网络。尽管多头绒泡菌改变了一些现有的网络来适应环境的变化,但它也从头开始重新构建了网络的大部分部分。我们将多头绒泡菌获得的结果与另一个分布式生物系统(蚂蚁群体)获得的结果进行了比较。我们假设蚂蚁的网络构建取决于更强的正反馈,这确保了蚂蚁更准确地收敛到最短路径,但在动态环境中受到网络历史的限制更大。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验