Suppr超能文献

对跟腱肌电控制拮抗型外骨骼的运动适应。

Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

机构信息

School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.

出版信息

J Neurophysiol. 2013 Apr;109(7):1804-14. doi: 10.1152/jn.01128.2011. Epub 2013 Jan 9.

Abstract

Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

摘要

人类的运动适应能力还不太清楚。为了深入了解在一个人的与特定运动指令相关的习得的神经肌肉图谱受到重大干扰后发生的神经重新组织,我们将机器人外骨骼的机械作用与跟腱肌在行走过程中的肌电图(EMG)谱联系起来。动力外骨骼产生的踝背屈扭矩与跟腱肌的募集成正比,从而限制了跟腱的跖屈扭矩能力。我们假设神经完整的受试者会通过减少跟腱募集来改变肌肉激活模式,以应对拮抗的外骨骼。受试者进行了两次 30 分钟的外骨骼行走练习。最初的反应是通过增加跟腱激活来“对抗”有阻力的外骨骼。到训练结束时,受试者明显减少了跟腱募集,导致步态几乎没有踝部蹬离。此外,尽管仅使用跟腱肌电图来控制外骨骼,但受试者的趋势是按比例减少腓肠肌募集。本研究的结果表明,神经系统有能力重新调整运动输出,以适应跟腱肌肉机械输出的重大变化和相关的感觉反馈。这项研究进一步证明,完整个体的人类运动系统具有高度的灵活性,能够适应各种神经肌肉干扰,以实现有效的运动。

相似文献

1
Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.
J Neurophysiol. 2013 Apr;109(7):1804-14. doi: 10.1152/jn.01128.2011. Epub 2013 Jan 9.
3
Learning to walk with a robotic ankle exoskeleton.
J Biomech. 2007;40(12):2636-44. doi: 10.1016/j.jbiomech.2006.12.006. Epub 2007 Feb 2.
5
Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):31-7. doi: 10.1109/TNSRE.2008.2008285.
6
Motor modules during adaptation to walking in a powered ankle exoskeleton.
J Neuroeng Rehabil. 2018 Jan 3;15(1):2. doi: 10.1186/s12984-017-0343-x.
7
Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
J Biomech. 2010 Jan 19;43(2):203-9. doi: 10.1016/j.jbiomech.2009.09.030. Epub 2009 Oct 29.
8
Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
J Biomech. 2010 May 7;43(7):1401-7. doi: 10.1016/j.jbiomech.2009.12.024. Epub 2010 Feb 19.
10
[Effects of ankle exoskeleton assistance during human walking on lower limb muscle contractions and coordination patterns].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):75-83. doi: 10.7507/1001-5515.202107040.

引用本文的文献

1
Development of a neural efficiency metric to assess human-exoskeleton adaptations.
Front Robot AI. 2025 Apr 2;12:1541963. doi: 10.3389/frobt.2025.1541963. eCollection 2025.
2
Decoding the brain-machine interaction for upper limb assistive technologies: advances and challenges.
Front Hum Neurosci. 2025 Feb 6;19:1532783. doi: 10.3389/fnhum.2025.1532783. eCollection 2025.
4
Challenges and solutions for application and wider adoption of wearable robots.
Wearable Technol. 2021 Nov 21;2:e14. doi: 10.1017/wtc.2021.13. eCollection 2021.
5
Lower Limb Exoskeleton Sensors: State-of-the-Art.
Sensors (Basel). 2022 Nov 23;22(23):9091. doi: 10.3390/s22239091.
6
General variability leads to specific adaptation toward optimal movement policies.
Curr Biol. 2022 May 23;32(10):2222-2232.e5. doi: 10.1016/j.cub.2022.04.015. Epub 2022 May 9.
9
Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.
Front Bioeng Biotechnol. 2021 Apr 9;9:615358. doi: 10.3389/fbioe.2021.615358. eCollection 2021.
10
A simple, clinically applicable motor learning protocol to increase push-off during gait: A proof-of-concept.
PLoS One. 2021 Jan 19;16(1):e0245523. doi: 10.1371/journal.pone.0245523. eCollection 2021.

本文引用的文献

1
Muscle coordination is habitual rather than optimal.
J Neurosci. 2012 May 23;32(21):7384-91. doi: 10.1523/JNEUROSCI.5792-11.2012.
2
Patterned control of human locomotion.
J Physiol. 2012 May 15;590(10):2189-99. doi: 10.1113/jphysiol.2011.215137. Epub 2012 Mar 12.
3
A single bout of resistance exercise does not affect nonlinear dynamics of lower extremity kinematics during treadmill walking.
Gait Posture. 2011 Jun;34(2):285-7. doi: 10.1016/j.gaitpost.2011.04.003. Epub 2011 May 12.
4
Muscle redundancy does not imply robustness to muscle dysfunction.
J Biomech. 2011 Apr 29;44(7):1264-70. doi: 10.1016/j.jbiomech.2011.02.014. Epub 2011 Mar 21.
5
Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis.
Clin Biomech (Bristol). 2011 Jun;26(5):509-15. doi: 10.1016/j.clinbiomech.2010.12.010. Epub 2011 Jan 20.
7
Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.
J Neurophysiol. 2010 Sep;104(3):1325-38. doi: 10.1152/jn.00604.2009. Epub 2010 Jun 23.
8
Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking.
J Biomech. 2010 May 7;43(7):1401-7. doi: 10.1016/j.jbiomech.2009.12.024. Epub 2010 Feb 19.
9
Dynamic principles of gait and their clinical implications.
Phys Ther. 2010 Feb;90(2):157-74. doi: 10.2522/ptj.20090125. Epub 2009 Dec 18.
10
Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke.
J Neurophysiol. 2010 Feb;103(2):844-57. doi: 10.1152/jn.00825.2009. Epub 2009 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验