Suppr超能文献

相似文献

1
Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):31-7. doi: 10.1109/TNSRE.2008.2008285.
4
Learning to walk with a robotic ankle exoskeleton.
J Biomech. 2007;40(12):2636-44. doi: 10.1016/j.jbiomech.2006.12.006. Epub 2007 Feb 2.
5
Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.
J Neurophysiol. 2013 Apr;109(7):1804-14. doi: 10.1152/jn.01128.2011. Epub 2013 Jan 9.
6
Mechanics and energetics of incline walking with robotic ankle exoskeletons.
J Exp Biol. 2009 Jan;212(Pt 1):32-41. doi: 10.1242/jeb.017277.
9
An Unpowered Exoskeleton With a Bionic Multi-Segment Foot Structure for Walking Assistance.
IEEE Trans Neural Syst Rehabil Eng. 2025;33:1969-1977. doi: 10.1109/TNSRE.2025.3569835.
10
Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton.
J Biomech. 2010 Jan 19;43(2):203-9. doi: 10.1016/j.jbiomech.2009.09.030. Epub 2009 Oct 29.

引用本文的文献

2
Comparison of sEMG Onset Detection Methods for Occupational Exoskeletons on Extensive Close-to-Application Data.
Bioengineering (Basel). 2024 Jan 25;11(2):119. doi: 10.3390/bioengineering11020119.
4
Advances on mechanical designs for assistive ankle-foot orthoses.
Front Bioeng Biotechnol. 2023 Jul 7;11:1188685. doi: 10.3389/fbioe.2023.1188685. eCollection 2023.
5
Coordination Between Partial Robotic Exoskeletons and Human Gait: A Comprehensive Review on Control Strategies.
Front Bioeng Biotechnol. 2022 May 25;10:842294. doi: 10.3389/fbioe.2022.842294. eCollection 2022.
7
Review of control strategies for lower-limb exoskeletons to assist gait.
J Neuroeng Rehabil. 2021 Jul 27;18(1):119. doi: 10.1186/s12984-021-00906-3.
9
Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation.
Front Neurorobot. 2020 Feb 18;14:9. doi: 10.3389/fnbot.2020.00009. eCollection 2020.
10
Switching Assistance for Exoskeletons During Cyclic Motions.
Front Neurorobot. 2019 Jun 19;13:41. doi: 10.3389/fnbot.2019.00041. eCollection 2019.

本文引用的文献

1
The effect of walking speed on muscle function and mechanical energetics.
Gait Posture. 2008 Jul;28(1):135-43. doi: 10.1016/j.gaitpost.2007.11.004. Epub 2007 Dec 26.
2
Locomotor adaptation to a powered ankle-foot orthosis depends on control method.
J Neuroeng Rehabil. 2007 Dec 21;4:48. doi: 10.1186/1743-0003-4-48.
3
Assessment of motion of a swing leg and gait rehabilitation with a gravity balancing exoskeleton.
IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):410-20. doi: 10.1109/TNSRE.2007.903930.
4
Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):379-86. doi: 10.1109/tnsre.2007.903919.
5
Learning to walk with a robotic ankle exoskeleton.
J Biomech. 2007;40(12):2636-44. doi: 10.1016/j.jbiomech.2006.12.006. Epub 2007 Feb 2.
6
Volitional control of neural activity: implications for brain-computer interfaces.
J Physiol. 2007 Mar 15;579(Pt 3):571-9. doi: 10.1113/jphysiol.2006.127142. Epub 2007 Jan 18.
7
An exploration of the function of the triceps surae during normal gait using functional electrical stimulation.
Gait Posture. 2007 Oct;26(4):482-8. doi: 10.1016/j.gaitpost.2006.12.001. Epub 2007 Jan 16.
8
Brain-computer interface technology as a tool to augment plasticity and outcomes for neurological rehabilitation.
J Physiol. 2007 Mar 15;579(Pt 3):637-42. doi: 10.1113/jphysiol.2006.123067. Epub 2006 Nov 9.
9
Brain-machine interfaces: past, present and future.
Trends Neurosci. 2006 Sep;29(9):536-46. doi: 10.1016/j.tins.2006.07.004. Epub 2006 Jul 21.
10
Powered lower limb orthoses for gait rehabilitation.
Top Spinal Cord Inj Rehabil. 2005;11(2):34-49. doi: 10.1310/6gl4-um7x-519h-9jyd.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验