Oscar Langendorff Institute of Physiology, University of Rostock, Gertrudenstrasse 9, 18057 Rostock, Germany.
Neurobiol Dis. 2013 Jun;54:183-93. doi: 10.1016/j.nbd.2012.12.011. Epub 2013 Jan 8.
Impairment of synaptic plasticity such as long-term potentiation (LTP) is a common finding in various animal models of a number of neurodegenerative disorders. While cognitive deficits associated with these models are plausibly attributed to impaired plasticity, it is an intriguing question whether learning impairment correlates in general with compromised synaptic plasticity. In the present study, we have addressed this issue and discovered an enhancement of theta-burst stimulation-induced LTP at Schaffer collateral-CA1 synapses from chronically epileptic animals. The LTP enhancement was abolished by the NMDA receptor 2B (NR2B) blocker Ro 25-6981 (1μM) while it was preserved following application of the NR2A blocker NVP-AAM077 (50nM). Moreover, pharmacological characterization of intracellularly recorded excitatory postsynaptic potentials (EPSP) from CA1 pyramidal neurons indicated an increased NR2B/NR2A ratio in epileptic tissue, and NMDA receptor mediated excitatory postsynaptic currents showed significantly longer decay times. Quantitative reverse-transcriptase PCR confirmed the transcriptional up-regulation of NR2B-mRNA in chronically epileptic animals. To test the significance for epileptiform activity, recurrent epileptiform discharges (REDs) in the CA1 area induced by bath application of either high K(+) (8mM) plus gabazine (5μM) or 4-aminopyridine (50μM), were also characterized pharmacologically. While in control slices the presence of Ro 25-6981 had no effect on the RED frequency, NR2B inhibition significantly increased epileptic activity in tissue from epileptic animals. Our results demonstrate that CA1 synapses in chronically epileptic tissue can undergo an LTP enhancement due to an NR2B up-regulation in CA1 pyramidal neurons. On the network level, this up-regulation appears to be a compensatory process, since blockade of these receptors leaves the tissue more susceptible to hyperexcitability.
突触可塑性的损害,如长时程增强(LTP),是许多神经退行性疾病的各种动物模型中的常见发现。虽然这些模型相关的认知缺陷可能归因于可塑性受损,但学习障碍是否普遍与突触可塑性受损相关是一个有趣的问题。在本研究中,我们解决了这个问题,发现慢性癫痫动物的 Schaffer 侧支-CA1 突触的θ爆发刺激诱导的 LTP 增强。NMDA 受体 2B(NR2B)阻滞剂 Ro 25-6981(1μM)可消除 LTP 增强,而 NR2A 阻滞剂 NVP-AAM077(50nM)处理后可保留 LTP 增强。此外,对 CA1 锥体神经元内记录的兴奋性突触后电位(EPSP)进行药理学特征分析表明,癫痫组织中 NR2B/NR2A 比值增加,NMDA 受体介导的兴奋性突触后电流衰减时间明显延长。定量逆转录-聚合酶链反应证实,慢性癫痫动物的 NR2B-mRNA 转录上调。为了测试对癫痫样活动的意义,我们还通过 bath 应用高 K+(8mM)加 gabazine(5μM)或 4-氨基吡啶(50μM)在 CA1 区诱发的复发性癫痫样放电(REDs)进行药理学特征分析。在对照切片中,Ro 25-6981 的存在对 RED 频率没有影响,但 NR2B 抑制显著增加了癫痫动物组织中的癫痫活动。我们的结果表明,由于 CA1 锥体神经元中 NR2B 的上调,慢性癫痫组织中的 CA1 突触可以经历 LTP 增强。在网络水平上,这种上调似乎是一种代偿过程,因为阻断这些受体使组织更容易发生超兴奋性。