Suppr超能文献

鉴定 FUSCA3 的直接靶标,FUSCA3 是拟南芥种子发育的关键调节因子。

Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.

机构信息

Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, 40546.

出版信息

Plant Physiol. 2013 Mar;161(3):1251-64. doi: 10.1104/pp.112.212282. Epub 2013 Jan 11.

Abstract

FUSCA3 (FUS3) is a B3 domain transcription factor that is a member of the LEAFY COTYLEDON (LEC) group of genes. The LEC genes encode proteins that also include LEC2, a B3 domain factor related to FUS3, and LEC1, a CCAAT box-binding factor. LEC1, LEC2, and FUS3 are essential for plant embryo development. All three loss-of-function mutants in Arabidopsis (Arabidopsis thaliana) prematurely exit embryogenesis and enter seedling developmental programs. When ectopically expressed, these genes promote embryo programs in seedlings. We report on chromatin immunoprecipitation-tiling array experiments to globally map binding sites for FUS3 that, along with other published work to assess transcriptomes in response to FUS3, allow us to determine direct from indirect targets. Many transcription factors associated with embryogenesis are direct targets of FUS3, as are genes involved in the seed maturation program. FUS3 regulates genes encoding microRNAs that, in turn, control transcripts encoding transcription factors involved in developmental phase changes. Examination of direct targets of FUS3 reveals that FUS3 acts primarily or exclusively as a transcriptional activator. Regulation of microRNA-encoding genes is one mechanism by which FUS3 may repress indirect target genes. FUS3 also directly up-regulates VP1/ABI3-LIKE1 (VAL1), encoding a B3 domain protein that functions as a repressor of transcription. VAL1, along with VAL2 and VAL3, is involved in the transition from embryo to seedling development. Many genes are responsive to FUS3 and to VAL1/VAL2 but with opposite regulatory consequences. The emerging picture is one of complex cross talk and interactions among embryo transcription factors and their target genes.

摘要

FUSCA3 (FUS3) 是一种 B3 结构域转录因子,是 LEAFY COTYLEDON (LEC) 基因家族的成员。LEC 基因编码的蛋白质还包括 LEC2,一种与 FUS3 相关的 B3 结构域因子,以及 LEC1,一种 CCAAT 盒结合因子。LEC1、LEC2 和 FUS3 是植物胚胎发育所必需的。拟南芥(Arabidopsis thaliana)中这三种功能丧失突变体过早地退出胚胎发生并进入幼苗发育程序。当异位表达时,这些基因会促进幼苗中的胚胎程序。我们报告了染色质免疫沉淀平铺阵列实验,以全局绘制 FUS3 的结合位点图谱,结合其他评估 FUS3 响应转录组的已发表工作,使我们能够确定直接和间接靶标。许多与胚胎发生相关的转录因子是 FUS3 的直接靶标,参与种子成熟程序的基因也是如此。FUS3 调节 microRNA 编码基因,而 microRNA 又控制参与发育阶段变化的转录因子的转录物。对 FUS3 的直接靶标的检查表明,FUS3 主要或完全作为转录激活剂起作用。microRNA 编码基因的调节是 FUS3 可能抑制间接靶标基因的一种机制。FUS3 还直接上调编码 VP1/ABI3-LIKE1 (VAL1) 的基因,VAL1 编码一种 B3 结构域蛋白,作为转录抑制物发挥作用。VAL1 与 VAL2 和 VAL3 一起参与从胚胎到幼苗发育的转变。许多基因对 FUS3 和 VAL1/VAL2 有反应,但具有相反的调节后果。出现的情况是胚胎转录因子及其靶基因之间存在复杂的交叉对话和相互作用。

相似文献

1
Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.
Plant Physiol. 2013 Mar;161(3):1251-64. doi: 10.1104/pp.112.212282. Epub 2013 Jan 11.
3
Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3.
Plant J. 2020 Aug;103(5):1679-1694. doi: 10.1111/tpj.14854. Epub 2020 Jun 22.
4
Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression.
Plant Physiol. 2013 Nov;163(3):1293-305. doi: 10.1104/pp.113.220988. Epub 2013 Sep 16.
6
LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed.
Biochim Biophys Acta Gene Regul Mech. 2018 May;1861(5):443-450. doi: 10.1016/j.bbagrm.2018.03.005. Epub 2018 Mar 24.
7
HSI2/VAL1 Silences to Regulate the Developmental Transition from Seed Maturation to Vegetative Growth in Arabidopsis.
Plant Cell. 2018 Mar;30(3):600-619. doi: 10.1105/tpc.17.00655. Epub 2018 Feb 23.
10
LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3.
Plant Cell Physiol. 2005 Mar;46(3):399-406. doi: 10.1093/pcp/pci048. Epub 2005 Feb 2.

引用本文的文献

1
Plant oil biosynthesis and genetic improvement: progress, challenges, and opportunities.
Plant Physiol. 2025 Sep 1;199(1). doi: 10.1093/plphys/kiaf358.
2
Plant microRNA maturation and function.
Nat Rev Mol Cell Biol. 2025 Jul 18. doi: 10.1038/s41580-025-00871-y.
4
Unraveling the Mechanistic Basis for Control of Seed Longevity.
Plants (Basel). 2025 Mar 5;14(5):805. doi: 10.3390/plants14050805.
5
Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.
Front Genome Ed. 2025 Jan 7;6:1488024. doi: 10.3389/fgeed.2024.1488024. eCollection 2024.
7
The Identification of Family Genes and Their Expression, Function, and Regulation in .
Plants (Basel). 2024 Dec 17;13(24):3524. doi: 10.3390/plants13243524.
8
Genome-wide profiling of soybean WRINKLED1 transcription factor binding sites provides insight into seed storage lipid biosynthesis.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2415224121. doi: 10.1073/pnas.2415224121. Epub 2024 Oct 30.
9
Mining the oil code: New insights behind oil production in Brassica napus.
Plant Physiol. 2024 Dec 23;197(1). doi: 10.1093/plphys/kiae457.

本文引用的文献

1
Toward the identification and regulation of the Arabidopsis thaliana ABI3 regulon.
Nucleic Acids Res. 2012 Sep 1;40(17):8240-54. doi: 10.1093/nar/gks594. Epub 2012 Jun 22.
3
Transcriptional enhancers in protein-coding exons of vertebrate developmental genes.
PLoS One. 2012;7(5):e35202. doi: 10.1371/journal.pone.0035202. Epub 2012 May 2.
5
The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27.
Plant Physiol. 2012 May;159(1):418-32. doi: 10.1104/pp.112.194878. Epub 2012 Mar 27.
6
Coding exons function as tissue-specific enhancers of nearby genes.
Genome Res. 2012 Jun;22(6):1059-68. doi: 10.1101/gr.133546.111. Epub 2012 Mar 22.
7
Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana.
Plant J. 2012 Aug;71(3):427-42. doi: 10.1111/j.1365-313X.2012.04999.x. Epub 2012 May 30.
10
Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas.
Oncogene. 2012 Jun 14;31(24):3002-3008. doi: 10.1038/onc.2011.470. Epub 2011 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验