Gesty-Palmer Diane, Yuan Ling, Martin Bronwen, Wood William H, Lee Mi-Hye, Janech Michael G, Tsoi Lam C, Zheng W Jim, Luttrell Louis M, Maudsley Stuart
Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
Mol Endocrinol. 2013 Feb;27(2):296-314. doi: 10.1210/me.2012-1091. Epub 2013 Jan 11.
Biased G protein-coupled receptor agonists are orthosteric ligands that possess pathway-selective efficacy, activating or inhibiting only a subset of the signaling repertoire of their cognate receptors. In vitro, D-Trp(12),Tyr(34)-bPTH(7-34) [bPTH(7-34)], a biased agonist for the type 1 PTH receptor, antagonizes receptor-G protein coupling but activates arrestin-dependent signaling. In vivo, both bPTH(7-34) and the conventional agonist hPTH(1-34) stimulate anabolic bone formation. To understand how two PTH receptor ligands with markedly different in vitro efficacy could elicit similar in vivo responses, we analyzed transcriptional profiles from calvarial bone of mice treated for 8 wk with vehicle, bPTH(7-34) or hPTH(1-34). Treatment of wild-type mice with bPTH(7-34) primarily affected pathways that promote expansion of the osteoblast pool, notably cell cycle regulation, cell survival, and migration. These responses were absent in β-arrestin2-null mice, identifying them as downstream targets of β-arrestin2-mediated signaling. In contrast, hPTH(1-34) primarily affected pathways classically associated with enhanced bone formation, including collagen synthesis and matrix mineralization. hPTH(1-34) actions were less dependent on β-arrestin2, as might be expected of a ligand capable of G protein activation. In vitro, bPTH(7-34) slowed the rate of preosteoblast proliferation, enhanced osteoblast survival when exposed to an apoptotic stimulus, and stimulated cell migration in wild-type, but not β-arrestin2-null, calvarial osteoblasts. These results suggest that bPTH(7-34) and hPTH(1-34) affect bone mass in vivo through predominantly separate genomic mechanisms created by largely distinct receptor-signaling networks and demonstrate that functional selectivity can be exploited to change the quality of G protein-coupled receptor efficacy.
偏向性G蛋白偶联受体激动剂是具有途径选择性效力的正构配体,仅激活或抑制其同源受体信号传导库的一个子集。在体外,D-Trp(12),Tyr(34)-bPTH(7-34) [bPTH(7-34)],一种1型甲状旁腺激素受体的偏向性激动剂,拮抗受体-G蛋白偶联,但激活依赖于阻遏蛋白的信号传导。在体内,bPTH(7-34)和传统激动剂hPTH(1-34)均刺激合成代谢性骨形成。为了解两种体外效力明显不同的甲状旁腺激素受体配体如何引发相似的体内反应,我们分析了用赋形剂、bPTH(7-34)或hPTH(1-34)处理8周的小鼠颅骨的转录谱。用bPTH(7-34)处理野生型小鼠主要影响促进成骨细胞池扩增的途径,特别是细胞周期调控、细胞存活和迁移。这些反应在β-阻遏蛋白2基因敲除小鼠中不存在,表明它们是β-阻遏蛋白2介导的信号传导的下游靶点。相比之下,hPTH(1-34)主要影响经典的与增强骨形成相关的途径,包括胶原蛋白合成和基质矿化。hPTH(1-34)的作用对β-阻遏蛋白2的依赖性较小,这正如预期的一种能够激活G蛋白的配体。在体外,bPTH(7-34)减缓前成骨细胞增殖速率,在暴露于凋亡刺激时增强成骨细胞存活,并刺激野生型而非β-阻遏蛋白2基因敲除的颅骨成骨细胞的细胞迁移。这些结果表明,bPTH(7-34)和hPTH(1-34)在体内主要通过由基本不同的受体信号网络产生的各自独立的基因组机制影响骨量,并证明功能选择性可用于改变G蛋白偶联受体效力的质量。