Smeyne R J, Goldowitz D
Department of Neurosciences, Roche Institute of Molecular Biology, Memphis, TN.
Brain Res Dev Brain Res. 1990 Mar 1;52(1-2):211-8. doi: 10.1016/0165-3806(90)90237-s.
Within the cerebellum of the adult homozygous weaver mutant mouse there is an approximate 50% reduction in the number of vermal Purkinje cells. It is not known if this deficit is due to a primary action of the weaver gene or if the cell loss is due to a secondary effect of the weaver gene. We examined this question using chimeric mice, produced by fusing C57BL/6 homozygous or heterozygous weaver embryos (high beta-glucuronidase activity, Gusb) with C3HAw wild-type embryos (low beta-glucuronidase activity, Gush). Chimeric cerebella were stained for beta-glucuronidase activity and counts were made of the number of wv/- (Gusb) and +/+ (Gush) Purkinje cells. If the weaver gene acts intrinsically in the Purkinje cells, then the number of genetically wv/- and not +/+ Purkinje cells should be decreased. Alternatively, if the Purkinje cells are extrinsically affected by the weaver gene, then both wv/- and +/+ should be equally reduced. In this study, using comparative measures of chimerism and Purkinje cell numbers, only weaver Purkinje cells were reduced, while the +/+ Purkinje cells were unaffected in the chimera. These results indicate that the decrease in Purkinje cell number seen in the wv/wv and wv/+ cerebellum is a direct effect of the weaver gene. In concordance with previous work, the disorganization of the Purkinje cells in the cerebellum, however, results from an indirect effect of the weaver gene.