Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston Massachusetts 02115, United States.
Anal Chem. 2013 Feb 19;85(4):2423-30. doi: 10.1021/ac303428h. Epub 2013 Feb 6.
The formation of isoaspartyl residues (isoAsp or isoD) via either aspartyl isomerization or asparaginyl deamidation alters protein structure and potentially biological function. This is a spontaneous and nonenzymatic process, ubiquitous both in vivo and in nonbiological systems, such as in protein pharmaceuticals. In almost all organisms, protein L-isoaspartate O-methyltransferase (PIMT, EC2.1.1.77) recognizes and initiates the conversion of isoAsp back to aspartic acid. Additionally, alternative proteolytic and excretion pathways to metabolize isoaspartyl-containing proteins have been proposed but not fully explored, largely due to the analytical challenges for detecting isoAsp. We report here the relative quantitation and site profiling of isoAsp in urinary proteins from wild type and PIMT-deficient mice, representing products from excretion pathways. First, using a biochemical approach, we found that the total isoaspartyl level of proteins in urine of PIMT-deficient male mice was elevated. Subsequently, the major isoaspartyl protein species in urine from these mice were identified as major urinary proteins (MUPs) by shotgun proteomics. To enhance the sensitivity of isoAsp detection, a targeted proteomic approach using electron transfer dissociation-selected reaction monitoring (ETD-SRM) was developed to investigate isoAsp sites in MUPs. A total of 38 putative isoAsp modification sites in MUPs were investigated, with five derived from the deamidation of asparagine that were confirmed to contribute to the elevated isoAsp levels. Our findings lend experimental evidence for the hypothesized excretion pathway for isoAsp proteins. Additionally, the developed method opens up the possibility to explore processing mechanisms of isoaspartyl proteins at the molecular level, such as the fate of protein pharmaceuticals in circulation.
异天冬氨酸残基(isoAsp 或 isoD)的形成通过天冬氨酸异构化或天冬酰胺脱酰胺作用改变蛋白质结构并可能改变其生物学功能。这是一个自发的、非酶促的过程,在体内和非生物系统中都普遍存在,如在蛋白质药物中。在几乎所有的生物体中,蛋白质 L-异天冬氨酸 O-甲基转移酶(PIMT,EC2.1.1.77)识别并启动将 isoAsp 转回天冬氨酸的转化。此外,已经提出了替代的蛋白水解和排泄途径来代谢含有异天冬氨酸的蛋白质,但尚未得到充分探索,这主要是由于分析检测 isoAsp 的挑战。我们在此报告了野生型和 PIMT 缺陷型小鼠尿液中蛋白质的 isoAsp 相对定量和位点分析,代表了排泄途径的产物。首先,我们使用生化方法发现,PIMT 缺陷型雄性小鼠尿液中蛋白质的总异天冬氨酸水平升高。随后,通过shotgun 蛋白质组学将这些小鼠尿液中的主要异天冬氨酸蛋白种类鉴定为主要尿蛋白(MUPs)。为了提高 isoAsp 检测的灵敏度,我们开发了一种使用电子转移解离选择反应监测(ETD-SRM)的靶向蛋白质组学方法来研究 MUPs 中的 isoAsp 位点。共研究了 MUPs 中的 38 个假定的 isoAsp 修饰位点,其中 5 个来自天冬酰胺的脱酰胺作用,证实它们有助于升高的 isoAsp 水平。我们的发现为假设的 isoAsp 蛋白质排泄途径提供了实验证据。此外,所开发的方法为在分子水平上探索异天冬氨酸蛋白质的加工机制,如循环中蛋白质药物的命运,开辟了可能性。