Suppr超能文献

一种新的快速表面肌电信号分解方法。

A new and fast approach towards sEMG decomposition.

机构信息

Department of Electrical Engineering, SCD-SISTA, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium.

出版信息

Med Biol Eng Comput. 2013 May;51(5):593-605. doi: 10.1007/s11517-012-1029-y. Epub 2013 Jan 18.

Abstract

The decomposition of high-density surface EMG (HD-sEMG) interference patterns into the contribution of motor units is still a challenging task. We introduce a new, fast solution to this problem. The method uses a data-driven approach for selecting a set of electrodes to enable discrimination of present motor unit action potentials (MUAPs). Then, using shapes detected on these channels, the hierarchical clustering algorithm as reported by Quian Quiroga et al. (Neural Comput 16:1661-1687, 2004) is extended for multichannel data in order to obtain the motor unit action potential (MUAP) signatures. After this first step, more motor unit firings are obtained using the extracted signatures by a novel demixing technique. In this demixing stage, we propose a time-efficient solution for the general convolutive system that models the motor unit firings on the HD-sEMG grid. We constrain this system by using the extracted signatures as prior knowledge and reconstruct the firing patterns in a computationally efficient way. The algorithm performance is successfully verified on simulated data containing up to 20 different MUAP signatures. Moreover, we tested the method on real low contraction recordings from the lateral vastus leg muscle by comparing the algorithm's output to the results obtained by manual analysis of the data from two independent trained operators. The proposed method showed to perform about equally successful as the operators.

摘要

高密度表面肌电(HD-sEMG)干扰模式的分解成运动单元的贡献仍然是一个具有挑战性的任务。我们引入了一种新的、快速的解决方案。该方法使用一种数据驱动的方法来选择一组电极,以实现对当前运动单元动作电位(MUAP)的区分。然后,使用这些通道上检测到的形状,扩展了 Quian Quiroga 等人(Neural Comput 16:1661-1687, 2004)报道的层次聚类算法,以便对多通道数据进行分析,从而获得运动单元动作电位(MUAP)特征。在这第一步之后,使用新的解混技术提取的特征获得更多的运动单元点火。在这个解混阶段,我们提出了一种针对模型运动单元点火的一般卷积系统的高效时间解决方案。我们通过使用提取的特征作为先验知识来约束这个系统,并以计算有效的方式重建点火模式。该算法在包含多达 20 种不同 MUAP 特征的模拟数据上的性能得到了成功验证。此外,我们通过比较该算法的输出与两位独立训练操作人员对数据的手动分析结果,在来自外侧股肌肉的低收缩记录的真实数据上测试了该方法。结果表明,该方法的性能与操作人员相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验