Suppr超能文献

多通道肌内肌电图信号的自动分解

Automatic decomposition of multichannel intramuscular EMG signals.

作者信息

Florestal J R, Mathieu P A, McGill K C

机构信息

Institut de génie biomédical (dépt. de physiologie), Université de Montréal, Pav. Paul G. Desmarais, 2960 Chemin de la tour, Local 2513, Montréal, Qué, Canada H3T 1J4.

出版信息

J Electromyogr Kinesiol. 2009 Feb;19(1):1-9. doi: 10.1016/j.jelekin.2007.04.001. Epub 2007 May 21.

Abstract

We describe an automatic algorithm for decomposing multichannel EMG signals into their component motor unit action potential (MUAP) trains, including signals from widely separated recording sites in which MUAPs exhibit appreciable interchannel offset and jitter. The algorithm has two phases. In the clustering phase, the distinct, recurring MUAPs in each channel are identified, the ones that correspond to the same motor units are determined by their temporal relationships, and multichannel templates are computed. In the identification stage, the MUAP discharges in the signal are identified using matched filtering and superimposition resolution techniques. The algorithm looks for the MUAPs with the largest single channel components first, using matches in one channel to guide the search in other channels, and using information from the other channels to confirm or refute each identification. For validation, the algorithm was used to decompose 10 real 6-to-8-channel EMG signals containing activity from up to 25 motor units. Comparison with expert manual decomposition showed that the algorithm identified more than 75% of the total 176 MUAP trains with an accuracy greater than 95%. The algorithm is fast, robust, and shows promise to be accurate enough to be a useful tool for decomposing multichannel signals. It is freely available at http://emglab.stanford.edu.

摘要

我们描述了一种自动算法,用于将多通道肌电图(EMG)信号分解为其组成的运动单位动作电位(MUAP)序列,包括来自广泛分离的记录部位的信号,其中MUAP在通道间表现出明显的偏移和抖动。该算法有两个阶段。在聚类阶段,识别每个通道中不同的、反复出现的MUAP,通过它们的时间关系确定对应于同一运动单位的MUAP,并计算多通道模板。在识别阶段,使用匹配滤波和叠加分辨率技术识别信号中的MUAP放电。该算法首先寻找具有最大单通道成分的MUAP,利用一个通道中的匹配来指导其他通道中的搜索,并利用其他通道的信息来确认或反驳每个识别结果。为了进行验证,该算法被用于分解10个真实的6至8通道EMG信号,这些信号包含多达25个运动单位的活动。与专家手动分解的比较表明,该算法识别出了176个MUAP序列中的75%以上,准确率超过95%。该算法快速、稳健,有望准确到足以成为分解多通道信号的有用工具。它可在http://emglab.stanford.edu上免费获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验