Suppr超能文献

基于形态计量磁共振成像分析的脑室周围结节性异位的检测。

Automated morphometric magnetic resonance imaging analysis for the detection of periventricular nodular heterotopia.

机构信息

Swiss Epilepsy Center, Zürich, Switzerland.

出版信息

Epilepsia. 2013 Feb;54(2):305-13. doi: 10.1111/epi.12054. Epub 2013 Jan 18.

Abstract

PURPOSE

To describe a novel magnetic resonance imaging (MRI) postprocessing technique for the detection of periventricular nodular heterotopia (PNH) and to evaluate its diagnostic value. The method is a further development of voxel-based morphometric analysis with focus on a region of interest around the lateral ventricles to increase the sensitivity and specificity for automated detection of abnormally located gray matter in this area.

METHODS

T(1) -weighted MRI volume data sets were normalized and segmented in statistical parametric mapping (SPM 5 software), and the distribution of gray matter was compared to a normal database. As a new approach, individual masks derived from segmentation of the lateral ventricles were used to restrict the search for ectopic gray matter to the periventricular area. PNH were automatically detected by localizing the maximum deviation from the normal database in this area, provided that the z-score exceeded a certain threshold. The optimal z-score threshold for maximum sensitivity and specificity was determined by a receiver operating characteristic (ROC) curve analysis. The method was applied in 40 patients with PNH and 400 controls.

KEY FINDINGS

PNH were detected in 37 of 40 patients, and false positives were found in 34 of 400 controls, amounting to 92.5% sensitivity and 91.5% specificity. In 17 of the patients in whom PNH could be identified, these lesions had been overlooked in the past, and in 8 patients even in the high-resolution MRI subsequently used for postprocessing.

SIGNIFICANCE

The results suggest that automated morphometric MRI analysis with focus on ectopic gray matter in the periventricular areas facilitates the evaluation of MRI data and increases the sensitivity for the detection of PNH.

摘要

目的

描述一种新的磁共振成像(MRI)后处理技术,用于检测脑室周围结节性异位(PNH),并评估其诊断价值。该方法是基于体素的形态计量分析的进一步发展,重点是侧脑室周围的感兴趣区域,以提高自动检测该区域异常位置灰质的敏感性和特异性。

方法

使用统计参数映射(SPM5 软件)对 T1 加权 MRI 体积数据集进行归一化和分割,并将灰质分布与正常数据库进行比较。作为一种新方法,从侧脑室分割中得出的个体掩模用于将异位灰质的搜索限制在脑室周围区域。通过在该区域定位与正常数据库的最大偏差,自动检测 PNH,前提是 z 分数超过一定阈值。通过受试者工作特征(ROC)曲线分析确定最大敏感性和特异性的最佳 z 分数阈值。该方法应用于 40 例 PNH 患者和 400 例对照。

主要发现

在 40 例患者中检测到 37 例 PNH,在 400 例对照中发现 34 例假阳性,敏感性为 92.5%,特异性为 91.5%。在 17 例可以识别 PNH 的患者中,这些病变过去被忽视,在 8 例患者中甚至在随后用于后处理的高分辨率 MRI 中也被忽视。

意义

结果表明,重点关注脑室周围异位灰质的自动形态计量 MRI 分析有助于评估 MRI 数据,并提高 PNH 的检测敏感性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验