Department of Chemistry, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 Japan.
J Phys Chem A. 2013 Feb 21;117(7):1393-9. doi: 10.1021/jp310361x. Epub 2013 Jan 31.
Strikingly different Coulomb explosion behavior under intense laser fields is shown between the cis and trans geometric isomers of dichloroethene using 40-fs pulses at 0.8 μm. Although the fragment-ion distributions in the mass spectra did not aid in the identification of the geometric and positional isomers of the dichloroethenes, we found that the angular distributions of atomic ions were strongly dependent on the geometric structures. The angular distributions of chlorine ions, carbon ions, and protons were similar between 1,1- and cis-1,2-dichloroethene, whereas trans-1,2-dichloroethene showed a very sharp distribution of chlorine ions and quite different distributions of carbon ions and protons. The origin of the anisotropic ion angular distributions is the geometric selection of molecules in the tunnel-ionization process followed by a Coulomb explosion, although molecules are randomly oriented in the gas phase. The highly charged molecular ions exploded into pieces, and the direction of atomic-ion ejection was strongly correlated with the relative configuration of atoms with respect to the electron-extraction axis, the repulsion with adjacent atomic ions within the molecule, and the degree of the persistence of a molecular frame. We propose herein that the most probable electron-extraction axis by tunneling, which is governed by the configuration of molecular orbitals, is different among three dichloroethene isomers. Because multiple ionization under intense laser fields occurs by sequential tunneling processes, the first ionization step at the leading edge of the laser pulse dominates the further ionization steps. Therefore, the shapes of the highest occupied molecular orbitals and probably the underlying orbitals determine the anisotropic emission of atomic ions that can be used to identify isomers.
在使用 0.8μm 的 40fs 脉冲时,顺式和反式二氯乙烯的异构体在强激光场下表现出截然不同的库仑爆炸行为。虽然质谱中的碎片离子分布无助于识别二氯乙烯的几何和位置异构体,但我们发现原子离子的角分布强烈依赖于几何结构。氯离子、碳离子和质子的角分布在 1,1-和顺-1,2-二氯乙烯之间相似,而反-1,2-二氯乙烯则显示出氯离子非常尖锐的分布以及碳离子和质子非常不同的分布。各向异性离子角分布的起源是分子在隧道电离过程中的几何选择,随后发生库仑爆炸,尽管分子在气相中是随机取向的。高电荷的分子离子分裂成碎片,原子离子的发射方向与相对于电子提取轴的原子相对构型、分子内相邻原子离子之间的排斥以及分子框架的持续程度强烈相关。我们在此提出,由分子轨道的构型决定的最可能的隧道电子提取轴在三种二氯乙烯异构体中是不同的。由于强激光场下的多次电离是通过顺序隧道过程发生的,因此激光脉冲前沿的第一步电离主导着进一步的电离步骤。因此,最高占据分子轨道的形状和可能的轨道决定了原子离子的各向异性发射,这可以用于识别异构体。