Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Baltimore, School of Dentistry, Baltimore, Maryland 21201, USA.
J Pain. 2013 Mar;14(3):260-9. doi: 10.1016/j.jpain.2012.11.007. Epub 2013 Jan 16.
We have shown previously that electrical stimulation of the motor cortex reduces spontaneous painlike behaviors in animals with spinal cord injury (SCI). Because SCI pain behaviors are associated with abnormal inhibition in the inhibitory nucleus zona incerta (ZI) and because inactivation of the ZI blocks motor cortex stimulation (MCS) effects, we hypothesized that the antinociceptive effects of MCS are due to enhanced inhibitory inputs from ZI to the posterior thalamus (Po)-an area heavily implicated in nociceptive processing. To test this hypothesis, we used a rodent model of SCI pain and performed in vivo extracellular electrophysiological recordings in single well-isolated neurons in anesthetized rats. We recorded spontaneous activity in ZI and Po from 48 rats before, during, and after MCS (50 μA, 50 Hz; 300-ms pulses). We found that MCS enhanced spontaneous activity in 35% of ZI neurons and suppressed spontaneous activity in 58% of Po neurons. The majority of MCS-enhanced ZI neurons (81%) were located in the ventrorateral subdivision of ZI-the area containing Po-projecting ZI neurons. In addition, we found that inactivation of ZI using muscimol (GABAA receptor agonist) blocked the effects of MCS in 73% of Po neurons. Although we cannot eliminate the possibility that muscimol spread to areas adjacent to ZI, these findings support our hypothesis and suggest that MCS produces antinociception by activating the incertothalamic pathway.
This article describes a novel brain circuit that can be manipulated, in rats, to produce antinociception. These results have the potential to significantly impact the standard of care currently in place for the treatment of patients with intractable pain.
我们之前已经表明,刺激运动皮层可以减少脊髓损伤(SCI)动物的自发性疼痛行为。因为 SCI 疼痛行为与抑制性核团中间苍白球(ZI)的异常抑制有关,而且抑制 ZI 可以阻断运动皮层刺激(MCS)的效果,所以我们假设 MCS 的抗痛觉作用是由于来自 ZI 的抑制性输入增强到后丘脑(Po),这是一个与疼痛处理密切相关的区域。为了验证这一假设,我们使用了 SCI 疼痛的啮齿动物模型,并在麻醉大鼠中对单个隔离神经元进行了体内细胞外电生理记录。我们在 48 只大鼠中记录了 MCS 之前、期间和之后 ZI 和 Po 的自发性活动(50 μA,50 Hz;300-ms 脉冲)。我们发现,MCS 增强了 35%的 ZI 神经元的自发性活动,抑制了 58%的 Po 神经元的自发性活动。大多数 MCS 增强的 ZI 神经元(81%)位于 ZI 的腹外侧亚区——包含投射到 Po 的 ZI 神经元的区域。此外,我们发现使用毒蕈碱(GABAA 受体激动剂)抑制 ZI 可以阻断 MCS 在 73%的 Po 神经元中的作用。虽然我们不能排除毒蕈碱扩散到 ZI 相邻区域的可能性,但这些发现支持我们的假设,并表明 MCS 通过激活间脑通路产生抗痛觉作用。
本文描述了一种可以在大鼠中操纵的新的大脑回路,以产生抗痛觉作用。这些结果有可能显著影响目前用于治疗难治性疼痛患者的治疗标准。