School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, UK.
Curr Biol. 2013 Feb 4;23(3):185-95. doi: 10.1016/j.cub.2012.12.023. Epub 2013 Jan 17.
In nature, both daily light:dark cycles and temperature fluctuations are used by organisms to synchronize their endogenous time with the daily cycles of light and temperature. Proper synchronization is important for the overall fitness and wellbeing of animals and humans, and although we know a lot about light synchronization, this is not the case for temperature inputs to the circadian clock. In Drosophila, light and temperature cues can act as synchronization signals (Zeitgeber), but it is not known how they are integrated.
We investigated whether different groups of the Drosophila clock neurons that regulate behavioral rhythmicity contribute to temperature synchronization at different absolute temperatures. Using spatially restricted expression of the clock gene period, we show that dorsally located clock neurons mainly mediate synchronization to higher (20°C:29°C) and ventral clock neurons to lower (16°C:25°C) temperature cycles. Molecularly, the blue-light photoreceptor CRYPTOCHROME (CRY) dampens temperature-induced PERIOD (PER)-LUCIFERASE oscillations in dorsal clock neurons. Consistent with this finding, we show that in the absence of CRY very limited expression of PER in a few dorsal clock neurons is able to mediate behavioral temperature synchronization to high and low temperature cycles independent of light.
We show that different subsets of clock neurons operate at high and low temperatures to mediate clock synchronization to temperature cycles, suggesting that temperature entrainment is not restricted to measuring the amplitude of such cycles. CRY dampens temperature input to the clock and thereby contributes to the integration of different Zeitgebers.
在自然界中,生物利用日常的光暗循环和温度波动来使内源性时间与光和温度的日常周期同步。适当的同步对于动物和人类的整体健康和幸福感非常重要,尽管我们对光同步有了很多了解,但对于生物钟的温度输入情况却并非如此。在果蝇中,光和温度线索可以作为同步信号( Zeitgeber ),但目前尚不清楚它们是如何整合的。
我们研究了调节行为节律的果蝇生物钟神经元的不同群体是否在不同的绝对温度下对温度同步有贡献。通过对时钟基因 period 的空间限制表达,我们发现位于背部的时钟神经元主要介导对较高温度(20°C:29°C)的同步,而位于腹部的时钟神经元则主要介导对较低温度(16°C:25°C)的同步。分子水平上,蓝光光感受器 CRYPTOCHROME (CRY)减弱了背部时钟神经元中温度诱导的 PERIOD (PER)-LUCIFERASE 振荡。与这一发现一致的是,我们表明,在 CRY 缺失的情况下,背部几个时钟神经元中 PER 的表达非常有限,能够独立于光,介导对高温和低温循环的行为温度同步。
我们表明,不同的时钟神经元子集在高温和低温下工作,以介导生物钟对温度循环的同步,这表明温度驯化不仅限于测量此类循环的幅度。CRY 减弱了时钟的温度输入,从而有助于不同 Zeitgeber 的整合。