Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, BCM-125, Houston, TX 77030, USA.
J Mol Biol. 2013 Mar 25;425(6):1082-98. doi: 10.1016/j.jmb.2012.12.026. Epub 2013 Jan 16.
In this study, a normal mode analysis, named phase integrated method (PIM), is developed for computing modes of biomolecules in a crystalline environment. PIM can calculate low-frequency modes on one or a few asymmetric units (AUs) and generate exact modes of a whole unit cell according to space group symmetry, while the translational symmetry between unit cells is maintained via the periodic boundary condition. Therefore, the method can dramatically reduce computational cost in mode calculation in the presence of crystal symmetry. PIM also has an option to map modes onto a single AU to form an orthonormalized mode set, which can be directly applied to normal-mode-based thermal parameter refinement in X-ray crystallography. The performance of PIM was tested on all 65 space groups available in protein crystals (one protein for each space group) and on another set of 83 ultra-high-resolution X-ray structures. The results showed that considering space group symmetry in mode calculation is crucial for accurately describing vibrational motion in a crystalline environment. Moreover, the optimal inter-AU packing stiffness was found to be about 60% of that of intra-AU interactions (non-bonded interaction only).
在这项研究中,我们开发了一种用于计算晶体环境中生物分子模式的正常模式分析方法,称为相积分法(PIM)。PIM 可以计算一个或几个不对称单元(AU)上的低频模式,并根据空间群对称性生成整个单元的精确模式,同时通过周期性边界条件保持单元之间的平移对称性。因此,该方法可以在存在晶体对称性的情况下显著降低模式计算的计算成本。PIM 还具有将模式映射到单个 AU 以形成正交归一化模式集的选项,该选项可直接应用于 X 射线晶体学中的基于正常模式的热参数细化。PIM 的性能在所有可用的 65 种蛋白质晶体空间群(每个空间群一种蛋白质)和另一组 83 种超高分辨率 X 射线结构上进行了测试。结果表明,在模式计算中考虑空间群对称性对于准确描述晶体环境中的振动运动至关重要。此外,发现最佳的 AU 间组装刚度约为 AU 内相互作用(仅非键相互作用)的 60%。