Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, USA.
Bioinformatics. 2013 Mar 1;29(5):654-5. doi: 10.1093/bioinformatics/btt025. Epub 2013 Jan 17.
Comparative modeling of RNA is known to be important for making accurate secondary structure predictions. RNA structure prediction tools such as PPfold or RNAalifold use an aligned set of sequences in predictions. Obtaining a multiple alignment from a set of sequences is quite a challenging problem itself, and the quality of the alignment can affect the quality of a prediction. By implementing RNA secondary structure prediction in a statistical alignment framework, and predicting structures from multiple alignment samples instead of a single fixed alignment, it may be possible to improve predictions.
We have extended the program StatAlign to make use of RNA-specific features, which include RNA secondary structure prediction from multiple alignments using either a thermodynamic approach (RNAalifold) or a Stochastic Context-Free Grammars (SCFGs) approach (PPfold). We also provide the user with scores relating to the quality of a secondary structure prediction, such as information entropy values for the combined space of secondary structures and sampled alignments, and a reliability score that predicts the expected number of correctly predicted base pairs. Finally, we have created RNA secondary structure visualization plugins and automated the process of setting up Markov Chain Monte Carlo runs for RNA alignments in StatAlign.
The software is available from http://statalign.github.com/statalign/.
RNA 的比较建模对于进行准确的二级结构预测是很重要的。PPfold 或 RNAalifold 等 RNA 结构预测工具在预测中使用一组对齐的序列。从一组序列中获得多重比对本身就是一个具有挑战性的问题,比对的质量会影响预测的质量。通过在统计比对框架中实现 RNA 二级结构预测,并从多个比对样本而不是单个固定比对中预测结构,可能可以改进预测。
我们已经扩展了 StatAlign 程序以利用 RNA 特异性特征,包括使用热力学方法(RNAalifold)或随机上下文无关语法(SCFGs)方法(PPfold)从多重比对预测 RNA 二级结构。我们还为用户提供了与二级结构预测质量相关的评分,例如二级结构和采样比对的组合空间的信息熵值,以及预测正确预测碱基对数量的预期值的可靠性评分。最后,我们创建了 RNA 二级结构可视化插件,并自动为 StatAlign 中的 RNA 比对设置了 Markov 链蒙特卡罗运行。
该软件可从 http://statalign.github.com/statalign/ 获得。