University Health Network, Toronto Western Research Institute, and University of Toronto, Toronto, Ontario, Canada.
Arthritis Care Res (Hoboken). 2013 Aug;65(8):1343-57. doi: 10.1002/acr.21959.
To conduct a systematic review of the literature on the validation of algorithms identifying infections in administrative data for future use in populations with rheumatic diseases.
Medline and EMBase were searched using the themes "administrative data" and "infection" between 1950 and October 2012. Inclusion criteria consisted of validation studies of administrative data identifying infections in adult populations. Article quality was assessed using a validated tool.
A total of 5,941 articles were identified, 90 articles underwent detailed review, and 24 studies were included. The majority (17 of 24) examined bacterial infections and 9 examined opportunistic infections. Eighteen studies were from the US and all but 4 studies used International Classification of Diseases, Ninth Revision codes. Rheumatoid arthritis patients were studied in 6 of 24 articles. The studies on bacterial infections in general reported highly variable sensitivity and positive predictive value (PPV) for the diagnosis of infections using administrative data (sensitivity range 4.4-100%, PPV range 21.7-100%). Algorithms to identify opportunistic infections similarly had a highly variable sensitivity (range 20-100%) and PPV (range 1.3-100%). Thirteen studies compared the diagnostic accuracy of different algorithms, which revealed that strategies including a comprehensive algorithm using a greater number of diagnostic codes or codes in any position had the highest sensitivity for the diagnosis of infection. Algorithms that incorporated microbiologic or pharmacy data in combination with diagnostic codes had improved PPV for identification of tuberculosis.
Algorithms for identifying infections using administrative data should be selected based on the purpose of the study, with careful consideration as to whether a high sensitivity or PPV is required.
对用于识别管理数据中感染的算法进行文献的系统综述,以便未来在有风湿性疾病的人群中使用。
使用“管理数据”和“感染”这两个主题,在 1950 年至 2012 年 10 月期间在 Medline 和 EMBase 中进行了检索。纳入标准包括成人人群中用于识别感染的管理数据验证研究。使用经过验证的工具评估文章质量。
共确定了 5941 篇文章,90 篇文章进行了详细审查,24 项研究被纳入。其中大部分(24 项研究中的 17 项)研究了细菌感染,9 项研究了机会性感染。18 项研究来自美国,除 4 项研究外,所有研究均使用了国际疾病分类,第九版代码。24 项研究中有 6 项研究了类风湿关节炎患者。一般来说,关于细菌感染的研究报告表明,使用管理数据诊断感染的方法具有高度可变的敏感性和阳性预测值(敏感性范围为 4.4%-100%,阳性预测值范围为 21.7%-100%)。用于识别机会性感染的算法也具有高度可变的敏感性(范围为 20%-100%)和阳性预测值(范围为 1.3%-100%)。13 项研究比较了不同算法的诊断准确性,结果表明,使用诊断代码数量更多或任何位置的代码的综合算法的策略具有最高的感染诊断敏感性。将微生物学或药学数据与诊断代码结合使用的算法可提高结核识别的阳性预测值。
应根据研究目的选择用于识别管理数据中感染的算法,并仔细考虑是否需要高敏感性或阳性预测值。