Gelfond Jonathan, Zarzabal Lee Ann, Burton Tarea, Burns Suzanne, Sogayar Mari, Penalva Luiz O F
UT Health Science Center San Antonio, UT Health Science Center San Antonio, UT Health Science Center San Antonio, UT Health Science Center San Antonio, Universidad de São Paulo and UT Health Science Center San Antonio.
Ann Appl Stat. 2011;5(1):364-380. doi: 10.1214/10-AOAS389SUPP.
Alternative splicing of gene transcripts greatly expands the functional capacity of the genome, and certain splice isoforms may indicate specific disease states such as cancer. Splice junction microarrays interrogate thousands of splice junctions, but data analysis is difficult and error prone because of the increased complexity compared to differential gene expression analysis. We present Rank Change Detection (RCD) as a method to identify differential splicing events based upon a straightforward probabilistic model comparing the over- or underrepresentation of two or more competing isoforms. RCD has advantages over commonly used methods because it is robust to false positive errors due to nonlinear trends in microarray measurements. Further, RCD does not depend on prior knowledge of splice isoforms, yet it takes advantage of the inherent structure of mutually exclusive junctions, and it is conceptually generalizable to other types of splicing arrays or RNA-Seq. RCD specifically identifies the biologically important cases when a splice junction becomes more or less prevalent compared to other mutually exclusive junctions. The example data is from different cell lines of glioblastoma tumors assayed with Agilent microarrays.
基因转录本的可变剪接极大地扩展了基因组的功能容量,某些剪接异构体可能预示着特定的疾病状态,如癌症。剪接连接微阵列可检测数千个剪接连接,但由于与差异基因表达分析相比复杂性增加,数据分析困难且容易出错。我们提出秩变化检测(RCD)作为一种基于直接概率模型识别差异剪接事件的方法,该模型比较两种或更多竞争异构体的过表达或低表达情况。RCD比常用方法具有优势,因为它对微阵列测量中的非线性趋势导致的假阳性误差具有鲁棒性。此外,RCD不依赖于剪接异构体的先验知识,但它利用了互斥连接的固有结构,并且在概念上可推广到其他类型的剪接阵列或RNA测序。RCD专门识别与其他互斥连接相比,剪接连接变得更普遍或更不普遍时具有生物学重要性的情况。示例数据来自用安捷伦微阵列检测的胶质母细胞瘤肿瘤的不同细胞系。