Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
J Mol Graph Model. 2013 Mar;40:10-21. doi: 10.1016/j.jmgm.2012.12.007. Epub 2013 Jan 4.
Rop protein is a homo-dimer of helix-turn-helix and has relatively slow folding and unfolding rates compared to other dimeric proteins of similar size. Fluorescence studies cited in literature suggest that mutation of turn residues D30-A31 to G30-G31 (Gly₂) increases its folding and unfolding rates considerably. A further increase in number of glycines in the turn region results in decrease of folding rates compared to Gly₂ mutant. To understand the effect of glycine mutation on folding/unfolding rates of Rop and the conformational nature of turn region involved in formation of early folding species, we performed molecular dynamics simulations of turn peptides, ²⁵KLNELDADEQ³⁴ (DA peptide), ²⁵KLNELGGDEQ³⁴ (G₂ peptide), ²⁵KLNELGGGDEQ³⁵ (G₃ peptide) and ²⁵KLNELGGGEQ³⁴ (G₃(') peptide) from Rop at 300 K. Further Wt-Rop and mutant G₂-Rop monomers and dimers were also studied separately by molecular dynamics simulations. Our results show that glycine based peptides (G(n) peptides) have a higher loop closure propensity compared to DA. Comparison of monomeric and dimeric Rop simulations suggests that dimeric Rop necessarily requires α(L) conformation to be sampled at D30/G30 position in the turn region. Since glycine (at position 30) can readily adopt α(L) conformation, G(n) loop plays a dual role in both facilitating loop closure as well as facilitating reorganization/packing of helices required for structural adjustment during dimer formation in the folding of Rop. Based on our simulation results and available literature, we suggest a tentative kinetic model for Rop folding which allows us to estimate the contribution of loop closure propensity to the overall folding rates.
Rop 蛋白是一个螺旋-转角-螺旋的同源二聚体,与其他相似大小的二聚体蛋白相比,其折叠和展开速率相对较慢。文献中的荧光研究表明,将转角残基 D30-A31 突变为 G30-G31(甘氨酸₂)可显著提高其折叠和展开速率。在转角区域进一步增加甘氨酸的数量会导致折叠速率降低,而不是甘氨酸₂突变体。为了了解甘氨酸突变对 Rop 折叠/展开速率的影响以及参与早期折叠物种形成的转角区域的构象性质,我们在 300 K 下对 Rop 的转角肽 ²⁵KLNELDADEQ³⁴(DA 肽)、²⁵KLNELGGDEQ³⁴(G₂ 肽)、²⁵KLNELGGGDEQ³⁵(G₃ 肽)和 ²⁵KLNELGGGEQ³⁴(G₃(') 肽)进行了分子动力学模拟。此外,还分别通过分子动力学模拟研究了野生型 Rop 和突变体 G₂-Rop 单体和二聚体。我们的结果表明,与 DA 相比,基于甘氨酸的肽(G(n) 肽)具有更高的环闭倾向。单体和二聚体 Rop 模拟的比较表明,二聚体 Rop 必然需要在转角区域的 D30/G30 位置上采样 α(L)构象。由于甘氨酸(位于 30 位)可以很容易地采用 α(L)构象,G(n) 环在促进环闭以及促进结构调整过程中所需的螺旋的重组/包装方面发挥双重作用在 Rop 折叠中二聚体形成过程中。基于我们的模拟结果和现有文献,我们提出了一个用于 Rop 折叠的暂定动力学模型,该模型允许我们估计环闭倾向对整体折叠速率的贡献。