Suppr超能文献

分子动力学模拟探测环闭合倾向在 Rop 蛋白重折叠中的作用。

The role of loop closure propensity in the refolding of Rop protein probed by molecular dynamics simulations.

机构信息

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

出版信息

J Mol Graph Model. 2013 Mar;40:10-21. doi: 10.1016/j.jmgm.2012.12.007. Epub 2013 Jan 4.

Abstract

Rop protein is a homo-dimer of helix-turn-helix and has relatively slow folding and unfolding rates compared to other dimeric proteins of similar size. Fluorescence studies cited in literature suggest that mutation of turn residues D30-A31 to G30-G31 (Gly₂) increases its folding and unfolding rates considerably. A further increase in number of glycines in the turn region results in decrease of folding rates compared to Gly₂ mutant. To understand the effect of glycine mutation on folding/unfolding rates of Rop and the conformational nature of turn region involved in formation of early folding species, we performed molecular dynamics simulations of turn peptides, ²⁵KLNELDADEQ³⁴ (DA peptide), ²⁵KLNELGGDEQ³⁴ (G₂ peptide), ²⁵KLNELGGGDEQ³⁵ (G₃ peptide) and ²⁵KLNELGGGEQ³⁴ (G₃(') peptide) from Rop at 300 K. Further Wt-Rop and mutant G₂-Rop monomers and dimers were also studied separately by molecular dynamics simulations. Our results show that glycine based peptides (G(n) peptides) have a higher loop closure propensity compared to DA. Comparison of monomeric and dimeric Rop simulations suggests that dimeric Rop necessarily requires α(L) conformation to be sampled at D30/G30 position in the turn region. Since glycine (at position 30) can readily adopt α(L) conformation, G(n) loop plays a dual role in both facilitating loop closure as well as facilitating reorganization/packing of helices required for structural adjustment during dimer formation in the folding of Rop. Based on our simulation results and available literature, we suggest a tentative kinetic model for Rop folding which allows us to estimate the contribution of loop closure propensity to the overall folding rates.

摘要

Rop 蛋白是一个螺旋-转角-螺旋的同源二聚体,与其他相似大小的二聚体蛋白相比,其折叠和展开速率相对较慢。文献中的荧光研究表明,将转角残基 D30-A31 突变为 G30-G31(甘氨酸₂)可显著提高其折叠和展开速率。在转角区域进一步增加甘氨酸的数量会导致折叠速率降低,而不是甘氨酸₂突变体。为了了解甘氨酸突变对 Rop 折叠/展开速率的影响以及参与早期折叠物种形成的转角区域的构象性质,我们在 300 K 下对 Rop 的转角肽 ²⁵KLNELDADEQ³⁴(DA 肽)、²⁵KLNELGGDEQ³⁴(G₂ 肽)、²⁵KLNELGGGDEQ³⁵(G₃ 肽)和 ²⁵KLNELGGGEQ³⁴(G₃(') 肽)进行了分子动力学模拟。此外,还分别通过分子动力学模拟研究了野生型 Rop 和突变体 G₂-Rop 单体和二聚体。我们的结果表明,与 DA 相比,基于甘氨酸的肽(G(n) 肽)具有更高的环闭倾向。单体和二聚体 Rop 模拟的比较表明,二聚体 Rop 必然需要在转角区域的 D30/G30 位置上采样 α(L)构象。由于甘氨酸(位于 30 位)可以很容易地采用 α(L)构象,G(n) 环在促进环闭以及促进结构调整过程中所需的螺旋的重组/包装方面发挥双重作用在 Rop 折叠中二聚体形成过程中。基于我们的模拟结果和现有文献,我们提出了一个用于 Rop 折叠的暂定动力学模型,该模型允许我们估计环闭倾向对整体折叠速率的贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验