Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA.
J Nucl Med. 2013 Mar;54(3):424-30. doi: 10.2967/jnumed.112.108456. Epub 2013 Jan 22.
Selective inhibition of oncogenic targets and associated signaling pathways forms the basis of personalized cancer medicine. The clinical success of (V600E)BRAF inhibition in melanoma, coupled with the emergence of acquired resistance, underscores the importance of rigorously validating quantitative biomarkers of treatment response in this and similar settings. Because constitutive activation of BRAF leads to proliferation in tumors, we explored 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET to noninvasively quantify changes in tumor proliferation that are associated with pharmacologic inhibition of (V600E)BRAF downstream effectors and that precede changes in tumor volume.
Human colorectal cancer (CRC) cell lines expressing (V600E)BRAF were used to explore relationships between upregulation of p27 and phosphorylation of BRAF downstream effectors on small-molecule (V600E)BRAF inhibitor exposure. Athymic nude mice bearing (V600E)BRAF-expressing human CRC cell line xenografts were treated with a small-molecule (V600E)BRAF inhibitor (or vehicle) daily for 10 d. Predictive (18)F-FLT PET was conducted before changes in tumor volume occurred. Correlations were evaluated among PET, inhibition of phosphorylated MEK (p-MEK) and phosphorylated-ERK (p-ERK) by Western blot, tumor proliferation by histology, and small-molecule exposure by matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS).
Treatment of CRC cell lines with PLX4720 reduced proliferation associated with target inhibition and upregulation of p27. In vivo, PLX4720 treatment reduced (18)F-FLT uptake, but not (18)F-FDG uptake, in Lim2405 xenografts before quantifiable differences in xenograft volume. Reduced (18)F-FLT PET reflected a modest, yet significant, reduction of Ki67 immunoreactivity, inhibition of p-MEK and p-ERK, and elevated tumor cell p27 protein levels. Both (18)F-FLT PET and (18)F-FDG PET accurately reflected a lack of response in HT-29 xenografts, which MALDI imaging mass spectrometry suggested may have stemmed from limited PLX4720 exposure.
We used preclinical models of CRC to demonstrate (18)F-FLT PET as a sensitive predictor of response to (V600E)BRAF inhibitors. Because (18)F-FLT PET predicted reduced proliferation associated with attenuation of BRAF downstream effectors, yet (18)F-FDG PET did not, these data suggest that (18)F-FLT PET may represent an alternative to (18)F-FDG PET for quantifying clinical responses to BRAF inhibitors.
选择抑制致癌靶点和相关信号通路是癌症个体化治疗的基础。BRAF(V600E)抑制剂在黑色素瘤中的临床成功,以及获得性耐药的出现,突显了在这种情况下以及类似情况下严格验证治疗反应的定量生物标志物的重要性。由于 BRAF 的组成性激活导致肿瘤增殖,我们探索了 3'-脱氧-3'-(18)氟胸腺嘧啶核苷((18)F-FLT)PET 来非侵入性地定量与 (V600E)BRAF 下游效应物的药理抑制相关的肿瘤增殖变化,并且在肿瘤体积变化之前发生。
用人结直肠癌细胞系(CRC)表达(V600E)BRAF 来探索小分子(V600E)BRAF 抑制剂暴露时 p27 的上调和 BRAF 下游效应物的磷酸化之间的关系。荷有人 CRC 细胞系异种移植的裸鼠每天用小分子(V600E)BRAF 抑制剂(或载体)治疗 10 天。在肿瘤体积发生变化之前进行预测性(18)F-FLT PET。通过 Western blot 评估 PET、磷酸化 MEK(p-MEK)和磷酸化 ERK(p-ERK)的抑制、组织学肿瘤增殖以及基质辅助激光解吸/电离(MALDI)成像质谱(IMS)中小分子暴露之间的相关性。
PLX4720 处理 CRC 细胞系可降低与靶抑制和 p27 上调相关的增殖。在体内,PLX4720 治疗可降低 Lim2405 异种移植瘤的(18)F-FLT 摄取,但不降低(18)F-FDG 摄取,在可量化的异种移植瘤体积差异之前。减少的(18)F-FLT PET 反映了 Ki67 免疫反应性、p-MEK 和 p-ERK 的抑制以及肿瘤细胞 p27 蛋白水平的适度但显著降低。(18)F-FLT PET 和(18)F-FDG PET 均准确反映了 HT-29 异种移植瘤缺乏反应,MALDI 成像质谱提示这可能源于 PLX4720 暴露有限。
我们使用 CRC 临床前模型证明(18)F-FLT PET 是(V600E)BRAF 抑制剂反应的敏感预测因子。由于(18)F-FLT PET 预测与 BRAF 下游效应物衰减相关的增殖减少,而(18)F-FDG PET 没有,这些数据表明(18)F-FLT PET 可能替代(18)F-FDG PET 用于定量 BRAF 抑制剂的临床反应。