Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, USA.
J Chem Phys. 2013 Jan 21;138(3):034102. doi: 10.1063/1.4774332.
We report ReaxFF molecular dynamics simulations for reactive adsorption of NH(3) on dehydrated CuBTC metal-organic framework. If the temperature is moderate (up to 125 °C), the dehydrated CuBTC demonstrates a good hydrostatic stability for water concentrations up to 4.0 molecules per copper site. However, if the temperature increases to 550 K, the dehydrated CuBTC will collapse even at a small water concentration, 1.0 H(2)O molecule per copper site. When NH(3) molecules are adsorbed in the channel and micropores of CuBTC, they prefer to chemisorb to the copper sites rather than forming a dimer with another NH(3) molecule. The formation of equimolar Cu(2)(NH(2))(4) and (NH(4))(3)BTC structures is observed at 348 K, which is in good agreement with previous experimental findings. The dehydrated CuBTC framework is partially collapsed upon NH(3) adsorption, while the Cu-Cu dimer structure remains stable under the investigated conditions. Further calculations reveal that the stability of CuBTC is related to the ammonia concentration. The critical NH(3) concentration after which the dehydrated CuBTC starts to collapse is determined to be 1.0 NH(3) molecule per copper site. Depending on whether NH(3) concentration is below or above the critical value, the dehydrated CuBTC can be stable to a higher temperature, 378 K, or can collapse at a lower temperature, 250 K. H(2)O∕NH(3) mixtures have also been studied, and we find that although water molecules do not demonstrate a strong interaction with the copper sites of CuBTC, the existence of water molecules can substantially prevent ammonia from interacting with CuBTC, and thus reduce the amount of chemisorbed NH(3) molecules on CuBTC and stabilize the CuBTC framework to some extent.
我们报告了 ReaxFF 分子动力学模拟,用于研究 NH(3)在脱水 CuBTC 金属有机骨架上的反应吸附。如果温度适中(高达 125°C),脱水 CuBTC 在高达 4.0 个水分子/铜位的水浓度下表现出良好的静水稳定性。然而,如果温度升高到 550 K,即使在较小的水浓度(1.0 H(2)O 分子/铜位)下,脱水 CuBTC 也会崩溃。当 NH(3)分子吸附在 CuBTC 的通道和微孔中时,它们更倾向于化学吸附在铜位上,而不是与另一个 NH(3)分子形成二聚体。在 348 K 时观察到等摩尔 Cu(2)(NH(2))(4)和 (NH(4))(3)BTC 结构的形成,这与先前的实验结果吻合较好。在 NH(3)吸附时,脱水 CuBTC 骨架部分坍塌,而在研究条件下 Cu-Cu 二聚体结构保持稳定。进一步的计算表明,CuBTC 的稳定性与氨浓度有关。确定脱水 CuBTC 开始坍塌的临界 NH(3)浓度为 1.0 NH(3)分子/铜位。根据 NH(3)浓度是否低于或高于临界值,脱水 CuBTC 可以在较高温度(378 K)下稳定存在,或者在较低温度(250 K)下坍塌。还研究了 H(2)O∕NH(3)混合物,我们发现尽管水分子与 CuBTC 的铜位没有很强的相互作用,但水分子的存在可以大大阻止氨与 CuBTC 相互作用,从而减少化学吸附在 CuBTC 上的 NH(3)分子的数量,并在一定程度上稳定 CuBTC 骨架。