Suppr超能文献

小动物多针孔 μSPECT 扫描仪用于小鼠成像的性能评估。

Performance evaluation of small-animal multipinhole μSPECT scanners for mouse imaging.

机构信息

Molecular Imaging Center Antwerp, Antwerp University, Universiteitsplein 1, 2610 Antwerp, Belgium.

出版信息

Eur J Nucl Med Mol Imaging. 2013 May;40(5):744-58. doi: 10.1007/s00259-012-2326-2. Epub 2013 Jan 24.

Abstract

PURPOSE

We compared the performance of three commercial small-animal μSPECT scanners equipped with multipinhole general purpose (GP) and multipinhole high-resolution (HR) collimators designed for imaging mice.

METHODS

Spatial resolution, image uniformity, point source sensitivity and contrast recovery were determined for the U-SPECT-II (MILabs), the NanoSPECT-NSO (BioScan) and the X-SPECT (GE) scanners. The pinhole diameters of the HR collimator were 0.35 mm, 0.6 mm and 0.5 mm for these three systems respectively. A pinhole diameter of 1 mm was used for the GP collimator. To cover a broad field of imaging applications three isotopes were used with various photon energies: (99m)Tc (140 keV), (111)In (171 and 245 keV) and (125)I (27 keV). Spatial resolution and reconstructed image uniformity were evaluated in both HR and a GP mode with hot rod phantoms, line sources and a uniform phantom. Point source sensitivity and contrast recovery measures were additionally obtained in the GP mode with a novel contrast recovery phantom developed in-house containing hot and cold submillimetre capillaries on a warm background.

RESULTS

In hot rod phantom images, capillaries as small as 0.4 mm with the U-SPECT-II, 0.75 mm with the X-SPECT and 0.6 mm with the NanoSPECT-NSO could be resolved with the HR collimators for (99m)Tc. The NanoSPECT-NSO achieved this resolution in a smaller field-of-view (FOV) and line source measurements showed that this device had a lower axial than transaxial resolution. For all systems, the degradation in image resolution was only minor when acquiring the more challenging isotopes (111)In and (125)I. The point source sensitivity with (99m)Tc and GP collimators was 3,984 cps/MBq for the U-SPECT-II, 620 cps/MBq for the X-SPECT and 751 cps/MBq for the NanoSPECT-NSO. The effects of volume sensitivity over a larger object were evaluated by measuring the contrast recovery phantom in a realistic FOV and acquisition time. For 1.5-mm rods at a noise level of 8 %, the contrast recovery coefficient (CRC) was 42 %, 37 % and 34 % for the U-SPECT-II, X-SPECT and NanoSPECT-NSO, respectively. At maximal noise levels of 10 %, a CRCcold of 70 %, 52 % and 42 % were obtained for the U-SPECT-II, X-SPECT and NanoSPECT-NSO, respectively. When acquiring (99m)Tc with the GP collimators, the integral/differential uniformity values were 30 %/14 % for the U-SPECT-II, 50 %/30 % for the X-SPECT and 38 %/25 % for the NanoSPECT-NSO. When using the HR collimators, these uniformity values remained similar for U-SPECT-II and X-SPECT, but not for the NanoSPECT-NSO for which the uniformity deteriorated with larger volumes.

CONCLUSION

We compared three μSPECT systems by acquiring and analysing mouse-sized phantoms including a contrast recovery phantom built in-house offering the ability to measure the hot contrast on a warm background in the submillimetre resolution range. We believe our evaluation addressed the differences in imaging potential for each system to realistically image tracer distributions in mouse-sized objects.

摘要

目的

我们比较了三种配备用于成像小鼠的多针孔通用 (GP) 和多针孔高分辨率 (HR) 准直器的商用小型 μSPECT 扫描仪的性能。

方法

为 U-SPECT-II(MILabs)、NanoSPECT-NSO(BioScan)和 X-SPECT(GE)扫描仪确定了空间分辨率、图像均匀性、点源灵敏度和对比恢复。这三个系统的 HR 准直器的针孔直径分别为 0.35、0.6 和 0.5 毫米。GP 准直器使用 1 毫米的针孔直径。为了覆盖广泛的成像应用领域,使用了三种具有不同光子能量的同位素:(99m)Tc(140keV)、(111)In(171 和 245keV)和 (125)I(27keV)。使用热棒体模、线源和均匀体模在 HR 和 GP 模式下评估了空间分辨率和重建图像均匀性。使用我们内部开发的新型对比恢复体模在 GP 模式下获得了点源灵敏度和对比恢复测量值,该体模在温暖的背景上包含热和冷亚毫米毛细管。

结果

在热棒体模图像中,U-SPECT-II 可以分辨出小至 0.4 毫米的毛细管,X-SPECT 可以分辨出 0.75 毫米的毛细管,NanoSPECT-NSO 可以分辨出 0.6 毫米的毛细管,用于 (99m)Tc。NanoSPECT-NSO 在较小的视野 (FOV) 中实现了这一分辨率,线源测量表明该设备的轴向分辨率低于横向分辨率。对于所有系统,在获取更具挑战性的同位素 (111)In 和 (125)I 时,图像分辨率的退化仅略有。使用 (99m)Tc 和 GP 准直器的点源灵敏度为 U-SPECT-II 的 3,984 cps/MBq、X-SPECT 的 620 cps/MBq 和 NanoSPECT-NSO 的 751 cps/MBq。通过在现实的 FOV 和采集时间内测量对比恢复体模,评估了体积灵敏度对较大物体的影响。对于噪声水平为 8%的 1.5 毫米棒,U-SPECT-II、X-SPECT 和 NanoSPECT-NSO 的对比恢复系数 (CRC) 分别为 42%、37%和 34%。在最大噪声水平为 10%时,U-SPECT-II、X-SPECT 和 NanoSPECT-NSO 的 CRCcold 分别为 70%、52%和 42%。当使用 GP 准直器采集 (99m)Tc 时,U-SPECT-II 的积分/微分均匀性值为 30%/14%,X-SPECT 为 50%/30%,NanoSPECT-NSO 为 38%/25%。当使用 HR 准直器时,U-SPECT-II 和 X-SPECT 的这些均匀性值保持相似,但 NanoSPECT-NSO 则不然,其均匀性随着体积的增加而恶化。

结论

我们通过获取和分析包括我们内部构建的对比恢复体模在内的小鼠大小的体模来比较三种 μSPECT 系统,该体模能够在亚毫米分辨率范围内测量温暖背景上的热点对比。我们相信我们的评估解决了每个系统的成像潜力差异,以真实地成像小鼠大小物体中的示踪剂分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验