Suppr超能文献

遗传性高钙尿结石形成大鼠对 1,25(OH)(2)D(3)的生物学反应增强。

Increased biological response to 1,25(OH)(2)D(3) in genetic hypercalciuric stone-forming rats.

机构信息

Division of Nephrology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

出版信息

Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F718-26. doi: 10.1152/ajprenal.00645.2012. Epub 2013 Jan 23.

Abstract

Genetic hypercalciuric stone-forming (GHS) rats, bred to maximize urine (U) calcium (Ca) excretion, have increased intestinal Ca absorption and bone Ca resorption and reduced renal Ca reabsorption, leading to increased UCa compared with the Sprague-Dawley (SD) rats. GHS rats have increased vitamin D receptors (VDR) at each of these sites, with normal levels of 1,25(OH)(2)D(3) (1,25D), indicating that their VDR is undersaturated with 1,25D. We tested the hypothesis that 1,25D would induce a greater increase in UCa in GHS rats by feeding both strains ample Ca and injecting 1,25D (25 ng · 100 g body wt(-1) · day(-1)) or vehicle for 16 days. With 1,25D, UCa in SD increased from 1.7 ± 0.3 mg/day to 24.4 ± 1.2 (Δ = 22.4 ± 1.5) and increased more in GHS from 10.5 ± 0.7 to 41.9 ± 0.7 (Δ = 29.8 ± 1.8; P = 0.003). To determine the mechanism of the greater increase in UCa in GHS rats, we measured kidney RNA expression of components of renal Ca transport. Expression of transient receptor potential vanilloid (TRPV)5 and calbindin D(28K) were increased similarly in SD + 1,25D and GHS + 1,25D. The Na(+)/Ca(2+) exchanger (NCX1) was increased in GHS + 1,25D. Klotho was decreased in SD + 1,25D and GHS + 1,25D. TRPV6 was increased in SD + 1,25D and increased further in GHS + 1,25D. Claudin 14, 16, and 19, Na/K/2Cl transporter (NKCC2), and secretory K channel (ROMK) did not differ between SD + 1,25D and GHS + 1,25D. Increased UCa with 1,25D in GHS exceeded that of SD, indicating that the increased VDR in GHS induces a greater biological response. This increase in UCa, which must come from the intestine and/or bone, must exceed any effect of 1,25D on TRPV6 or NCX1-mediated renal Ca reabsorption.

摘要

遗传高钙尿结石形成(GHS)大鼠,经培育最大限度地提高尿(U)钙(Ca)排泄,具有增加肠道 Ca 吸收和骨 Ca 重吸收,减少肾 Ca 重吸收的特点,导致 UCa 与 Sprague-Dawley(SD)大鼠相比增加。GHS 大鼠在这些部位的维生素 D 受体(VDR)都增加,1,25(OH)(2)D(3)(1,25D)水平正常,表明其 VDR 与 1,25D 不饱和。我们通过给两种品系大鼠喂食充足的 Ca,并注射 1,25D(25ng·100g 体重-1·天-1)或载体 16 天,来检验 1,25D 会诱导 GHS 大鼠 UCa 增加更多的假设。用 1,25D,SD 的 UCa 从 1.7±0.3mg/天增加到 24.4±1.2(Δ=22.4±1.5),GHS 增加更多,从 10.5±0.7 增加到 41.9±0.7(Δ=29.8±1.8;P=0.003)。为了确定 GHS 大鼠 UCa 增加更多的机制,我们测量了肾脏 Ca 转运的组成部分的肾 RNA 表达。SD+1,25D 和 GHS+1,25D 中瞬时受体电位香草酸(TRPV)5 和钙结合蛋白 D(28K)的表达相似增加。在 GHS+1,25D 中增加了 Na+/Ca2+交换器(NCX1)。Klotho 在 SD+1,25D 和 GHS+1,25D 中减少。TRPV6 在 SD+1,25D 中增加,并在 GHS+1,25D 中进一步增加。Claudin 14、16 和 19、Na/K/2Cl 转运体(NKCC2)和分泌性 K 通道(ROMK)在 SD+1,25D 和 GHS+1,25D 之间没有差异。在 GHS 中,1,25D 引起的 UCa 增加超过 SD,表明 GHS 中增加的 VDR 诱导了更大的生物学反应。这种 UCa 的增加,必须来自肠道和/或骨骼,必须超过 1,25D 对 TRPV6 或 NCX1 介导的肾 Ca 重吸收的任何影响。

相似文献

1
Increased biological response to 1,25(OH)(2)D(3) in genetic hypercalciuric stone-forming rats.
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F718-26. doi: 10.1152/ajprenal.00645.2012. Epub 2013 Jan 23.
2
1,25(OH)₂D₃-enhanced hypercalciuria in genetic hypercalciuric stone-forming rats fed a low-calcium diet.
Am J Physiol Renal Physiol. 2013 Oct 15;305(8):F1132-8. doi: 10.1152/ajprenal.00296.2013. Epub 2013 Aug 7.
3
Persistence of 1,25D-induced hypercalciuria in alendronate-treated genetic hypercalciuric stone-forming rats fed a low-calcium diet.
Am J Physiol Renal Physiol. 2014 May 1;306(9):F1081-7. doi: 10.1152/ajprenal.00680.2013. Epub 2014 Feb 26.
4
1,25(OH)₂D₃ induces a mineralization defect and loss of bone mineral density in genetic hypercalciuric stone-forming rats.
Calcif Tissue Int. 2014 May;94(5):531-43. doi: 10.1007/s00223-014-9838-7. Epub 2014 Jan 31.
5
Alendronate decreases urine calcium and supersaturation in genetic hypercalciuric rats.
Kidney Int. 1999 Jan;55(1):234-43. doi: 10.1046/j.1523-1755.1999.00247.x.
7
Mechanism and function of high vitamin D receptor levels in genetic hypercalciuric stone-forming rats.
J Bone Miner Res. 2005 Mar;20(3):447-54. doi: 10.1359/JBMR.041120. Epub 2004 Nov 29.
9
The relation between bone and stone formation.
Calcif Tissue Int. 2013 Oct;93(4):374-81. doi: 10.1007/s00223-012-9686-2. Epub 2012 Dec 18.
10
Modeling hypercalciuria in the genetic hypercalciuric stone-forming rat.
Curr Opin Nephrol Hypertens. 2015 Jul;24(4):336-44. doi: 10.1097/MNH.0000000000000130.

引用本文的文献

1
Structure-function analyses of human TRPV6 ancestral and derived haplotypes.
Structure. 2025 Jan 2;33(1):91-103.e5. doi: 10.1016/j.str.2024.10.018. Epub 2024 Nov 4.
3
Molecular pharmacology of the onco-TRP channel TRPV6.
Channels (Austin). 2023 Dec;17(1):2266669. doi: 10.1080/19336950.2023.2266669. Epub 2023 Oct 15.
6
Structural mechanism of human oncochannel TRPV6 inhibition by the natural phytoestrogen genistein.
Nat Commun. 2023 May 9;14(1):2659. doi: 10.1038/s41467-023-38352-5.
7
Structural mechanisms of TRPV6 inhibition by ruthenium red and econazole.
Nat Commun. 2021 Nov 1;12(1):6284. doi: 10.1038/s41467-021-26608-x.
10
Structure and function of the calcium-selective TRP channel TRPV6.
J Physiol. 2021 May;599(10):2673-2697. doi: 10.1113/JP279024. Epub 2020 Mar 13.

本文引用的文献

1
Quantitative analysis of TRP channel genes in mouse organs.
Arch Pharm Res. 2012 Oct;35(10):1823-30. doi: 10.1007/s12272-012-1016-8. Epub 2012 Nov 9.
3
Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption.
Am J Physiol Gastrointest Liver Physiol. 2012 Oct;303(7):G879-85. doi: 10.1152/ajpgi.00089.2012. Epub 2012 Aug 9.
4
Sex modifies genetic effects on residual variance in urinary calcium excretion in rat (Rattus norvegicus).
Genetics. 2012 Jul;191(3):1003-13. doi: 10.1534/genetics.112.138909. Epub 2012 May 2.
5
Renal adaptation to gentamicin-induced mineral loss.
Am J Nephrol. 2012;35(3):279-86. doi: 10.1159/000336518. Epub 2012 Feb 25.
6
Claudin-14 regulates renal Ca⁺⁺ transport in response to CaSR signalling via a novel microRNA pathway.
EMBO J. 2012 Apr 18;31(8):1999-2012. doi: 10.1038/emboj.2012.49. Epub 2012 Feb 28.
7
Genetic determinants of urolithiasis.
Nat Rev Nephrol. 2011 Dec 20;8(3):151-62. doi: 10.1038/nrneph.2011.211.
8
Vitamin d toxicity in adults: a case series from an area with endemic hypovitaminosis d.
Oman Med J. 2011 May;26(3):201-4. doi: 10.5001/omj.2011.49.
9
Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells.
Biochem Biophys Res Commun. 2011 Oct 28;414(3):557-62. doi: 10.1016/j.bbrc.2011.09.117. Epub 2011 Oct 1.
10
Claudins in renal physiology and disease.
Pediatr Nephrol. 2011 Dec;26(12):2133-42. doi: 10.1007/s00467-011-1824-y. Epub 2011 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验