Banerjee S, Chakrabarti C G
Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Calcutta -, 700009 India.
J Biol Phys. 1999 Mar;25(1):23-33. doi: 10.1023/A:1005167224049.
The paper first deals with the linear stability analysis of an activator-inhibitor reaction diffusion system to determine the nature of the bifurcation point of the system. The non-linear bifurcation analysis determining the steady state solution beyond the critical point enables us to determine characteristic features of the spatial inhomogeneous pattern formation arising out of the bifurcation of the state of the system.
本文首先对激活剂-抑制剂反应扩散系统进行线性稳定性分析,以确定该系统分岔点的性质。通过非线性分岔分析确定临界点之外的稳态解,使我们能够确定系统状态分岔产生的空间非均匀模式形成的特征。