Mingaleev S F, Christiansen P L, Gaididei Y B, Johansson M, Rasmussen K Ø
Bogolyubov Institute for Theoretical Physics, 14-b Metrologichna Str., 252143 Kiev, Ukraine.
J Biol Phys. 1999 Mar;25(1):41-63. doi: 10.1023/A:1005152704984.
Two models for energy and charge transport and storage in biomolecules are considered. A model based on the discrete nonlinear Schrödinger equation with long-range dispersive interactions (LRI's) between base pairs of DNA is offered for the description of nonlinear dynamics of the DNA molecule. We show that LRI's are responsible for the existence of an interval of bistability where two stable stationary states, a narrow, pinned state and a broad, mobile state, coexist at each value of the total energy. The possibility of controlled switching between pinned and mobile states is demonstrated. The mechanism could be important for controlling energy storage and transport in DNA molecules. Another model is offered for the description of nonlinear excitations in proteins and other anharmonic biomolecules. We show that in the highly anharmonic systems a bound state of Davydov and Boussinesq solitons can exist.
考虑了生物分子中能量、电荷传输与存储的两种模型。提出了一种基于离散非线性薛定谔方程的模型,该方程包含DNA碱基对之间的长程色散相互作用(LRI),用于描述DNA分子的非线性动力学。我们表明,LRI导致了双稳区间的存在,在该区间内,两个稳定的稳态,即一个窄的、固定态和一个宽的、移动态,在总能量的每个值处共存。展示了在固定态和移动态之间进行可控切换的可能性。该机制对于控制DNA分子中的能量存储和传输可能很重要。提供了另一种模型,用于描述蛋白质和其他非谐生物分子中的非线性激发。我们表明,在高度非谐系统中,可能存在达维多夫孤子和布辛涅斯克孤子的束缚态。