Centre National de la Recherche Scientifique, Unité Propre de Recherche 22, Institut Charles Sadron, Strasbourg, France.
Langmuir. 2013 Jun 18;29(24):7488-98. doi: 10.1021/la3045779. Epub 2013 Feb 11.
The identification and quantification of biomarkers or proteins is a real challenge in allowing the early detection of diseases. The functionalization of the biosensor surface has to be properly designed to prevent nonspecific interactions and to detect the biomolecule of interest specifically. A multilayered nanoarchitecture, based on polyelectrolyte multilayers (PEM) and the sequential immobilization of streptavidin and a biotinylated antibody, was elaborated as a promising platform for the label-free sensing of targeted proteins. We choose ovalbumin as an example. Thanks to the versatility of PEM films, the platform was built on two types of sensor surface and was evaluated using both optical- and viscoelastic-based techniques, namely, optical waveguide lightmode spectroscopy and the quartz crystal microbalance, respectively. A library of biotinylated poly(acrylic acids) (PAAs) was synthesized by grafting biotin moieties at different grafting ratios (GR). The biotin moieties were linked to the PAA chains through ethylene oxide (EO) spacers of different lengths. The adsorption of the PAA-EOn-biotin (GR) layer on a PEM precursor film allows tuning the surface density in biotin and thus the streptavidin adsorption mainly through the grafting ratio. The nonspecific adsorption of serum was reduced and even suppressed depending on the length of the EO arms. We showed that to obtain an antifouling polyelectrolyte the grafting of EO9 or EO19 chains at 25% in GR is sufficient. Thus, the spacer has a dual role: ensuring the antifouling property and allowing the accessibility of biotin moieties. Finally, an optimized platform based on the PAA-EO9-biotin (25%)/streptavidin/biotinylated-antibody architecture was built and demonstrated promising performance as interface architecture for bioaffinity sensing of a targeted protein, in our case, ovalbumin.
生物标志物或蛋白质的鉴定和定量是实现疾病早期检测的真正挑战。生物传感器表面的功能化必须经过精心设计,以防止非特异性相互作用,并特异性地检测感兴趣的生物分子。基于聚电解质多层(PEM)和链霉亲和素及生物素化抗体的顺序固定化,我们构建了一种多层纳米结构,作为一种有前途的无标记感测靶向蛋白质的平台。我们选择卵清蛋白作为一个例子。得益于 PEM 薄膜的多功能性,该平台构建在两种类型的传感器表面上,并分别使用基于光学和粘弹性的技术,即光波导光模光谱法和石英晶体微天平进行了评估。通过在不同接枝率(GR)下接枝生物素部分,合成了一系列生物素化聚(丙烯酸)(PAA)。生物素部分通过不同长度的环氧乙烷(EO)间隔物连接到 PAA 链上。PAA-EOn-biotin(GR)层在 PEM 前体膜上的吸附允许通过接枝率来调整表面生物素密度,从而主要通过接枝率来调整链霉亲和素的吸附。根据 EO 臂的长度,血清的非特异性吸附减少甚至被抑制。我们表明,为了获得具有抗污染性的聚电解质,在 GR 中接枝 25%的 EO9 或 EO19 链就足够了。因此,间隔物具有双重作用:确保抗污染性并允许生物素部分的可及性。最后,构建了基于 PAA-EO9-biotin(25%)/链霉亲和素/生物素化抗体结构的优化平台,并展示了作为生物亲和感测靶向蛋白质(在我们的情况下为卵清蛋白)接口结构的有前途的性能。