Suppr超能文献

利用马来酰亚胺修饰的聚乙二醇脂质与多功能交联剂将细胞(包括胰岛)包埋在稳定的超薄膜中。

Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimide-conjugated PEG-lipid with multifunctional crosslinkers.

机构信息

Department of Immunology, Genetics and Pathology, Uppsala University, Sweden.

出版信息

Biomaterials. 2013 Apr;34(11):2683-93. doi: 10.1016/j.biomaterials.2013.01.015. Epub 2013 Jan 21.

Abstract

The encapsulation of islets of Langerhans (islets) and insulin-secreting cells within a semi-permeable membrane has been suggested as a safe and simple technique for islet transplantation to attenuate early graft loss and avoid immunosuppressive therapy. The total volume of these implants tends, however, to increase upon encapsulation of the islets and cells within the polymer membrane, limiting transport between encapsulated cells and the surrounding tissue. Ultra-thin membranes could potentially overcome these diffusion limitations to provide for clinically applicable implants. Here we propose a method to encapsulate islets and cells within a stable ultra-thin polymer membrane using poly(ethylene glycol)-conjugated phospholipid bearing a maleimide group (Mal-PEG-lipids) and multiple interactive polymers (e.g., 4-arm PEG-Mal and 8-arm PEG-SH). When Mal-PEG-lipids were added to islet and cell suspensions, spontaneous incorporation into a cell surface occurred from the micelles at an equilibrium state. The addition of 4-arm PEG-Mal and 8-arm PEG-SH to the mixture induced a substantial increase in the membrane thickness because a number of Mal-PEG-lipid micelles were involved in the membrane formation at the micrometer level. No appreciable increase in islet volume was observed after microencapsulation by this method. Microencapsulation of islets with the polymer membranes, which showed semi-permeability, did not impair insulin release in response to glucose stimulation, even after 7 days. The polymer membrane structure surrounding the islets and cells was well maintained for at least 30 days. In addition, the membrane formed showed much lower thrombogenicity and inhibited complement activation upon exposure to human whole blood and serum.

摘要

胰岛(胰岛)和胰岛素分泌细胞被包裹在半透膜内,被认为是一种安全且简单的胰岛移植技术,可以减轻早期移植物丢失并避免免疫抑制治疗。然而,这些植入物的总体积在将胰岛和细胞包裹在聚合物膜内时会增加,从而限制了包裹细胞与周围组织之间的物质运输。超薄膜有可能克服这些扩散限制,为临床应用提供植入物。在这里,我们提出了一种使用聚乙二醇(PEG)修饰的磷脂(带有马来酰亚胺基团的 Mal-PEG-磷脂)和多种互穿聚合物(例如 4 臂 PEG-Mal 和 8 臂 PEG-SH)将胰岛和细胞包裹在稳定的超薄聚合物膜内的方法。当 Mal-PEG-磷脂被添加到胰岛和细胞悬浮液中时,从胶束在平衡状态下自发地掺入到细胞表面。向混合物中添加 4 臂 PEG-Mal 和 8 臂 PEG-SH 会导致膜厚度显著增加,因为大量的 Mal-PEG-磷脂胶束参与了微米级别的膜形成。用这种方法进行微囊化后,胰岛的体积没有明显增加。用具有半透性的聚合物膜对胰岛进行微囊化,不会损害胰岛素对葡萄糖刺激的释放反应,即使在 7 天后也是如此。至少在 30 天内,胰岛和细胞周围的聚合物膜结构保持良好。此外,形成的膜显示出较低的血栓形成性,并抑制暴露于人全血和血清时补体的激活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验