Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5632, USA.
Mol Pharmacol. 2013 Apr;83(4):848-56. doi: 10.1124/mol.112.084392. Epub 2013 Jan 24.
In this work, we investigated the formation, reactivity, and antiplatelet activity of various mixed disulfide conjugates of clopidogrel. Our results showed that the production of the active metabolite (AM) from 2-oxoclopidogrel by human liver microsomes (HLMs) is greatly affected by the thiol reductants used. Among the 10 thiol compounds tested, glutathione (GSH) is most efficient in producing the AM at a rate of 167 pmoles AM/min/mg HLM. Interestingly, no AM but only the mixed disulfide conjugates were formed in the presence of 6-chloropyridazine-3-thiol (CPT), 2,5-dimethylfuran-3-thiol, and 3-nitropyridine-2-thiol (NPT). The mass spectrometry (MS) and MS(2) spectra of the conjugates of these thiol compounds confirmed the presence of a mixed disulfide bond linkage between the AM and the thiol reductants. Kinetic studies revealed that the mixed disulfide conjugates were capable of exchanging thiols with GSH to release the AM with second order rate constants ranging from 1.2 to 28 M(-1)s(-1). The mixed disulfide conjugates of CPT and NPT showed potent inhibition of platelet aggregation after pretreatment with 1 mM GSH, confirming that the AM is responsible for the antiplatelet activity of clopidogrel. Collectively, our results provide strong support for a cytochrome P450 (P450)-mediated bioactivation mechanism involving the initial formation of a glutathionyl conjugate, followed by thiol-disulfide exchange with another GSH molecule to release the AM. Furthermore, the stable mixed disulfide conjugates identified in this study provide a platform to quantitatively generate the therapeutic AM without the need for P450-mediated bioactivation. This property can be further explored to overcome the interindividual variability in clopidogrel therapy.
在这项工作中,我们研究了各种氯吡格雷混合二硫键轭合物的形成、反应性和抗血小板活性。我们的结果表明,人肝微粒体(HLM)中 2-氧代氯吡格雷产生的活性代谢物(AM)受所用巯基还原剂的极大影响。在所测试的 10 种巯基化合物中,谷胱甘肽(GSH)在以 167 pmoles AM/min/mg HLM 的速率产生 AM 方面最有效。有趣的是,在存在 6-氯哒嗪-3-硫醇(CPT)、2,5-二甲基呋喃-3-硫醇和 3-硝基吡啶-2-硫醇(NPT)的情况下,没有形成 AM 但仅形成了混合二硫键轭合物。这些巯基化合物的质谱(MS)和 MS(2)谱证实了 AM 与巯基还原剂之间存在混合二硫键键合。动力学研究表明,混合二硫键轭合物能够与 GSH 交换硫醇以释放 AM,其二级速率常数范围为 1.2 至 28 M(-1)s(-1)。CPT 和 NPT 的混合二硫键轭合物在用 1 mM GSH 预处理后显示出强烈抑制血小板聚集的作用,证实 AM 是氯吡格雷抗血小板活性的原因。总之,我们的研究结果为涉及初始形成谷胱甘肽轭合物、然后与另一个 GSH 分子进行硫醇-二硫键交换以释放 AM 的细胞色素 P450(P450)介导的生物活化机制提供了有力支持。此外,本研究中鉴定的稳定混合二硫键轭合物为无需 P450 介导的生物活化即可定量生成治疗性 AM 提供了平台。这一特性可以进一步探索,以克服氯吡格雷治疗中的个体间变异性。