Suppr超能文献

在大鼠视网膜中映射红藻氨酸激活的内在神经元。

Mapping kainate activation of inner neurons in the rat retina.

机构信息

School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, 2052, Australia.

出版信息

J Comp Neurol. 2013 Aug 1;521(11):2416-38. doi: 10.1002/cne.23305.

Abstract

Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues.

摘要

红藻氨酸受体介导哺乳动物视网膜内多种神经元的快速兴奋性突触传递。然而,功能型红藻氨酸受体在已知细胞类型中的分配及其敏感性仍未得到解决。我们使用阳离子通道探针 1-氨基-4-胍基丁烷胍基丁胺(AGB),在结构完整的大鼠视网膜内研究了神经化学鉴定的细胞群体对红藻氨酸的敏感性。大多数内视网膜神经元群体以浓度依赖的方式对红藻氨酸产生反应。OFF 锥体双极细胞对所有内神经元表现出最高的红藻氨酸敏感性。AGB 和大分子标记物的免疫细胞化学定位证实,2 型双极细胞是该红藻氨酸敏感群体的一部分。大多数无长突细胞(ACs)和神经节细胞(GCs)表现出不同敏感性的红藻氨酸反应,主要神经化学类群之间存在差异(γ-氨基丁酸[GABA]/甘氨酸 ACs>甘氨酸 ACs>GABA ACs;谷氨酸[Glu]/弱 GABA GC>Glu GC)。传统和移位型胆碱能 ACs 对红藻氨酸高度敏感,而多巴胺能 ACs 似乎不表达功能性红藻氨酸受体。这些发现进一步加深了我们对复杂多细胞组织中神经元网络的理解。

相似文献

1
Mapping kainate activation of inner neurons in the rat retina.
J Comp Neurol. 2013 Aug 1;521(11):2416-38. doi: 10.1002/cne.23305.
4
Mapping glutamatergic drive in the vertebrate retina with a channel-permeant organic cation.
J Comp Neurol. 1999 Apr 28;407(1):47-64. doi: 10.1002/(sici)1096-9861(19990428)407:1<47::aid-cne4>3.0.co;2-0.
5
Quantification of amino acid neurochemistry secondary to NMDA or betaxolol application.
Clin Exp Ophthalmol. 2004 Oct;32(5):505-17. doi: 10.1111/j.1442-9071.2004.00885.x.
7
Functional activation of glutamate ionotropic receptors in the human peripheral retina.
Exp Eye Res. 2012 Jan;94(1):71-84. doi: 10.1016/j.exer.2011.11.008. Epub 2011 Nov 25.
8
Cross-talk between ON and OFF channels in the salamander retina: indirect bipolar cell inputs to ON-OFF ganglion cells.
Vision Res. 2007 Feb;47(3):384-92. doi: 10.1016/j.visres.2006.09.021. Epub 2006 Nov 7.
10
Cholinergic excitation complements glutamate in coding visual information in retinal ganglion cells.
J Physiol. 2018 Aug;596(16):3709-3724. doi: 10.1113/JP275073. Epub 2018 Jun 21.

引用本文的文献

1
Loss of Müller cell glutamine synthetase immunoreactivity is associated with neuronal changes in late-stage retinal degeneration.
Front Neuroanat. 2023 Mar 7;17:997722. doi: 10.3389/fnana.2023.997722. eCollection 2023.
2
Visual Disfunction due to the Selective Effect of Glutamate Agonists on Retinal Cells.
Int J Mol Sci. 2021 Jun 10;22(12):6245. doi: 10.3390/ijms22126245.
3
Müller Cell Metabolic Signatures: Evolutionary Conservation and Disruption in Disease.
Trends Endocrinol Metab. 2020 Apr;31(4):320-329. doi: 10.1016/j.tem.2020.01.005. Epub 2020 Feb 24.
4
Expression and distribution of peroxiredoxins in the retina and optic nerve.
Brain Struct Funct. 2016 Nov;221(8):3903-3925. doi: 10.1007/s00429-015-1135-3. Epub 2015 Oct 26.
5
Functional architecture of the retina: development and disease.
Prog Retin Eye Res. 2014 Sep;42:44-84. doi: 10.1016/j.preteyeres.2014.06.003. Epub 2014 Jun 28.

本文引用的文献

1
Functional expression of ionotropic glutamate receptors in the rabbit retinal ganglion cells.
Brain Res. 2012 Jan 3;1427:10-22. doi: 10.1016/j.brainres.2011.10.019. Epub 2011 Oct 14.
2
Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration.
J Comp Neurol. 2011 Oct 1;519(14):2713-33. doi: 10.1002/cne.22703.
3
Chromatic bipolar cell pathways in the mouse retina.
J Neurosci. 2011 Apr 27;31(17):6504-17. doi: 10.1523/JNEUROSCI.0616-11.2011.
4
Bipolar cell pathways for color vision in non-primate dichromats.
Vis Neurosci. 2011 Jan;28(1):51-60. doi: 10.1017/S0952523810000271. Epub 2010 Nov 12.
5
Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina.
J Comp Neurol. 2010 Jul 1;518(13):2456-74. doi: 10.1002/cne.22347.
6
Visual experience-independent functional expression of NMDA receptors in the developing rabbit retina.
Invest Ophthalmol Vis Sci. 2010 May;51(5):2744-54. doi: 10.1167/iovs.09-4217. Epub 2009 Dec 30.
8
The composition of the inner nuclear layer of the cat retina.
Vis Neurosci. 2009 Jul-Aug;26(4):365-74. doi: 10.1017/S0952523809990162. Epub 2009 Aug 24.
9
Localization and functional mapping of AMPA receptor subunits in the developing rabbit retina.
Invest Ophthalmol Vis Sci. 2008 Dec;49(12):5619-28. doi: 10.1167/iovs.07-1565. Epub 2008 Aug 1.
10
Odorant responsiveness of squid olfactory receptor neurons.
Anat Rec (Hoboken). 2008 Jul;291(7):763-74. doi: 10.1002/ar.20704.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验