阻断 NOX2 和 STIM1 信号通路可限制脂多糖诱导的血管炎症。
Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation.
机构信息
Department of Biochemistry, Temple University, Philadelphia, Pennsylvania, USA.
出版信息
J Clin Invest. 2013 Feb;123(2):887-902. doi: 10.1172/JCI65647. Epub 2013 Jan 25.
During sepsis, acute lung injury (ALI) results from activation of innate immune cells and endothelial cells by endotoxins, leading to systemic inflammation through proinflammatory cytokine overproduction, oxidative stress, and intracellular Ca2+ overload. Despite considerable investigation, the underlying molecular mechanism(s) leading to LPS-induced ALI remain elusive. To determine whether stromal interaction molecule 1-dependent (STIM1-dependent) signaling drives endothelial dysfunction in response to LPS, we investigated oxidative and STIM1 signaling of EC-specific Stim1-knockout mice. Here we report that LPS-mediated Ca2+ oscillations are ablated in ECs deficient in Nox2, Stim1, and type II inositol triphosphate receptor (Itpr2). LPS-induced nuclear factor of activated T cells (NFAT) nuclear accumulation was abrogated by either antioxidant supplementation or Ca2+ chelation. Moreover, ECs lacking either Nox2 or Stim1 failed to trigger store-operated Ca2+ entry (SOCe) and NFAT nuclear accumulation. LPS-induced vascular permeability changes were reduced in EC-specific Stim1-/- mice, despite elevation of systemic cytokine levels. Additionally, inhibition of STIM1 signaling prevented receptor-interacting protein 3-dependent (RIP3-dependent) EC death. Remarkably, BTP2, a small-molecule calcium release-activated calcium (CRAC) channel blocker administered after insult, halted LPS-induced vascular leakage and pulmonary edema. These results indicate that ROS-driven Ca2+ signaling promotes vascular barrier dysfunction and that the SOCe machinery may provide crucial therapeutic targets to limit sepsis-induced ALI.
在脓毒症中,急性肺损伤(ALI)是由内毒素激活先天免疫细胞和内皮细胞引起的,导致全身炎症通过促炎细胞因子过度产生、氧化应激和细胞内 Ca2+超载。尽管进行了大量研究,但导致 LPS 诱导的 ALI 的潜在分子机制仍不清楚。为了确定基质相互作用分子 1 依赖性(STIM1 依赖性)信号是否驱动内皮功能障碍对 LPS 的反应,我们研究了 EC 特异性 Stim1 敲除小鼠的氧化和 STIM1 信号。在这里,我们报告 LPS 介导的 Ca2+ 振荡在 Nox2、Stim1 和 II 型三磷酸肌醇受体(Itpr2)缺陷的 EC 中被消除。抗氧化剂补充或 Ca2+螯合可消除 LPS 诱导的 T 细胞激活因子(NFAT)核积累。此外,缺乏 Nox2 或 Stim1 的 EC 无法触发储存操作的 Ca2+进入(SOCe)和 NFAT 核积累。尽管系统细胞因子水平升高,但 EC 特异性 Stim1-/-小鼠中 LPS 诱导的血管通透性变化减少。此外,抑制 STIM1 信号可防止受体相互作用蛋白 3 依赖性(RIP3 依赖性)EC 死亡。值得注意的是,BTP2 是一种小分子钙释放激活钙(CRAC)通道阻断剂,在损伤后给药可阻止 LPS 诱导的血管渗漏和肺水肿。这些结果表明 ROS 驱动的 Ca2+ 信号促进血管屏障功能障碍,SOCe 机制可能为限制脓毒症诱导的 ALI 提供重要的治疗靶点。
相似文献
J Clin Invest. 2013-1-25
Am J Physiol Lung Cell Mol Physiol. 2014-10-17
Am J Respir Cell Mol Biol. 2016-12
引用本文的文献
本文引用的文献
Nat Rev Mol Cell Biol. 2012-9
Circ Res. 2012-8-14
Proc Natl Acad Sci U S A. 2012-5-14
J Vis Exp. 2011-12-21
J Biol Chem. 2011-11-14
Proc Natl Acad Sci U S A. 2011-11-14
Nat Med. 2011-11-7
Cell Calcium. 2011-9-17