Suppr超能文献

选一个,但要快:5' 剪接位点和选择过多的问题。

Pick one, but be quick: 5' splice sites and the problems of too many choices.

机构信息

School of Biological Sciences, Division of Molecular Genetics and Cell Biology, Nanyang Technological University, Singapore.

出版信息

Genes Dev. 2013 Jan 15;27(2):129-44. doi: 10.1101/gad.209759.112.

Abstract

Splice site selection is fundamental to pre-mRNA splicing and the expansion of genomic coding potential. 5' Splice sites (5'ss) are the critical elements at the 5' end of introns and are extremely diverse, as thousands of different sequences act as bona fide 5'ss in the human transcriptome. Most 5'ss are recognized by base-pairing with the 5' end of the U1 small nuclear RNA (snRNA). Here we review the history of research on 5'ss selection, highlighting the difficulties of establishing how base-pairing strength determines splicing outcomes. We also discuss recent work demonstrating that U1 snRNA:5'ss helices can accommodate noncanonical registers such as bulged duplexes. In addition, we describe the mechanisms by which other snRNAs, regulatory proteins, splicing enhancers, and the relative positions of alternative 5'ss contribute to selection. Moreover, we discuss mechanisms by which the recognition of numerous candidate 5'ss might lead to selection of a single 5'ss and propose that protein complexes propagate along the exon, thereby changing its physical behavior so as to affect 5'ss selection.

摘要

剪接位点选择对于前体 mRNA 剪接和基因组编码潜力的扩展至关重要。5'剪接位点(5'ss)是内含子 5' 末端的关键元件,极其多样化,因为数千种不同的序列在人类转录组中充当真正的 5'ss。大多数 5'ss 通过与 U1 小核 RNA(snRNA)的 5' 端碱基配对来识别。在这里,我们回顾了 5'ss 选择研究的历史,强调了确定碱基配对强度如何决定剪接结果的困难。我们还讨论了最近的工作,证明 U1 snRNA:5'ss 螺旋可以容纳非规范的碱基对,如凸起的双链。此外,我们描述了其他 snRNA、调节蛋白、剪接增强子以及替代 5'ss 的相对位置如何有助于选择。此外,我们还讨论了识别众多候选 5'ss 如何导致选择单个 5'ss 的机制,并提出蛋白质复合物沿着外显子传播,从而改变其物理行为,从而影响 5'ss 的选择。

相似文献

1
Pick one, but be quick: 5' splice sites and the problems of too many choices.
Genes Dev. 2013 Jan 15;27(2):129-44. doi: 10.1101/gad.209759.112.
3
Determinants of the inherent strength of human 5' splice sites.
RNA. 2005 May;11(5):683-98. doi: 10.1261/rna.2040605.
5
Modeling splicing outcome by combining 5'ss strength and splicing regulatory elements.
Nucleic Acids Res. 2022 Aug 26;50(15):8834-8851. doi: 10.1093/nar/gkac663.
6
Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs.
Nucleic Acids Res. 2024 Jun 10;52(10):5959-5974. doi: 10.1093/nar/gkae147.
7
U1 snRNA promotes the selection of nearby 5' splice sites by U6 snRNA in mammalian cells.
Genes Dev. 1996 Feb 1;10(3):338-50. doi: 10.1101/gad.10.3.338.
8
High-throughput analysis revealed mutations' diverging effects on exon 7 splicing.
RNA Biol. 2019 Oct;16(10):1364-1376. doi: 10.1080/15476286.2019.1630796. Epub 2019 Jun 19.
9
Profiling of cis- and trans-acting factors supporting noncanonical splice site activation.
RNA Biol. 2021 Jan;18(1):118-130. doi: 10.1080/15476286.2020.1798111. Epub 2020 Aug 5.
10
The effect of U1 snRNA binding free energy on the selection of 5' splice sites.
Biochem Biophys Res Commun. 2005 Jul 22;333(1):64-9. doi: 10.1016/j.bbrc.2005.05.078.

引用本文的文献

6
LUC7 proteins define two major classes of 5' splice sites in animals and plants.
Nat Commun. 2025 Feb 20;16(1):1574. doi: 10.1038/s41467-025-56577-4.
7
Rescue of common and rare exon 2 skipping variants of the GAA gene using modified U1 snRNA.
Mol Med. 2025 Feb 4;31(1):45. doi: 10.1186/s10020-025-01090-z.
8
RNA structure: implications in viral infections and neurodegenerative diseases.
Adv Biotechnol (Singap). 2024 Feb 2;2(1):3. doi: 10.1007/s44307-024-00010-2.
9
Splicing accuracy varies across human introns, tissues, age and disease.
Nat Commun. 2025 Jan 27;16(1):1068. doi: 10.1038/s41467-024-55607-x.
10
RNA splicing: a split consensus reveals two major 5' splice site classes.
Open Biol. 2025 Jan;15(1):240293. doi: 10.1098/rsob.240293. Epub 2025 Jan 15.

本文引用的文献

1
Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms.
RNA. 2013 Jan;19(1):96-102. doi: 10.1261/rna.037044.112. Epub 2012 Nov 21.
2
Differentially expressed, variant U1 snRNAs regulate gene expression in human cells.
Genome Res. 2013 Feb;23(2):281-91. doi: 10.1101/gr.142968.112. Epub 2012 Oct 15.
3
An RNA splicing enhancer that does not act by looping.
Angew Chem Int Ed Engl. 2012 Sep 24;51(39):9800-3. doi: 10.1002/anie.201202932. Epub 2012 Aug 31.
4
Complexities of 5'splice site definition: implications in clinical analyses.
RNA Biol. 2012 Jun;9(6):911-23. doi: 10.4161/rna.20386. Epub 2012 May 23.
6
The transition in spliceosome assembly from complex E to complex A purges surplus U1 snRNPs from alternative splice sites.
Nucleic Acids Res. 2012 Aug;40(14):6850-62. doi: 10.1093/nar/gks322. Epub 2012 Apr 13.
7
Three RNA recognition motifs participate in RNA recognition and structural organization by the pro-apoptotic factor TIA-1.
J Mol Biol. 2012 Jan 27;415(4):727-40. doi: 10.1016/j.jmb.2011.11.040. Epub 2011 Dec 2.
8
Functional mammalian spliceosomal complex E contains SMN complex proteins in addition to U1 and U2 snRNPs.
Nucleic Acids Res. 2012 Mar;40(6):2639-52. doi: 10.1093/nar/gkr1056. Epub 2011 Nov 21.
9
Genetic variation of pre-mRNA alternative splicing in human populations.
Wiley Interdiscip Rev RNA. 2012 Jul-Aug;3(4):581-92. doi: 10.1002/wrna.120. Epub 2011 Nov 17.
10
A U1-U2 snRNP interaction network during intron definition.
Mol Cell Biol. 2012 Jan;32(2):470-8. doi: 10.1128/MCB.06234-11. Epub 2011 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验