Suppr超能文献

顺式和反式作用因子谱分析支持非规范剪接位点的激活。

Profiling of cis- and trans-acting factors supporting noncanonical splice site activation.

机构信息

Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany.

Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne , Cologne, Germany.

出版信息

RNA Biol. 2021 Jan;18(1):118-130. doi: 10.1080/15476286.2020.1798111. Epub 2020 Aug 5.

Abstract

Recently, by combining transcriptomics with functional splicing reporter assays we were able to identify GT > GC > TT as the three highest ranked dinucleotides of human 5' splice sites (5'ss). Here, we have extended our investigations to the proteomic characterization of nuclear proteins that bind to canonical and noncanonical 5'ss. Surprisingly, we found that U1 snRNP binding to functional 5'ss sequences prevented components of the DNA damage response (DDR) from binding to the RNA, suggesting a close link between spliceosome arrangement and genome stability. We demonstrate that all tested noncanonical 5'ss sequences are bona-fide targets of the U2-type spliceosome and are bound by U1 snRNP, including U1-C, in the presence of splicing enhancers. The quantity of precipitated U1-C protein was similar for all noncanonical 5'ss dinucleotides, so that the highly different 5'ss usage was likely due to a later step after early U1 snRNP binding. In addition, we show that an internal GT at positions +5/+6 can be advantageous for splicing at position +1 of noncanonical splice sites. Likewise, and in agreement with previous observations, splicing inactive U1 snRNP binding sites could serve as splicing enhancers, which may also explain the higher abundance of U1 snRNPs compared to other U snRNPs. Finally, we observe that an arginine-serine (RS)-rich domain recruitment to stem loop I of the U1 snRNA is functionally sufficient to promote exon-definition and upstream 3'ss activation.

摘要

最近,我们通过将转录组学与功能剪接报告分析相结合,鉴定出 GT > GC > TT 是人类 5' 剪接位点 (5'ss) 中排名前三的二核苷酸。在这里,我们将研究范围扩展到了对结合典型和非典型 5'ss 的核蛋白的蛋白质组学特征进行研究。令人惊讶的是,我们发现 U1 snRNP 与功能性 5'ss 序列的结合阻止了 DNA 损伤反应 (DDR) 组件与 RNA 结合,这表明剪接体排列与基因组稳定性之间存在密切联系。我们证明,所有测试的非典型 5'ss 序列都是 U2 型剪接体的真正靶标,并且在存在剪接增强子的情况下,U1 snRNP 结合 U1-C。所有非典型 5'ss 二核苷酸的沉淀 U1-C 蛋白量相似,因此高度不同的 5'ss 使用可能是由于早期 U1 snRNP 结合后的后续步骤。此外,我们表明,+5/+6 位置的内部 GT 可能有利于非典型剪接位点+1 的剪接。同样,与先前的观察结果一致,无活性的 U1 snRNP 结合位点可以作为剪接增强子,这也可以解释与其他 U snRNPs 相比,U1 snRNPs 的丰度更高。最后,我们观察到富含精氨酸-丝氨酸 (RS) 的结构域募集到 U1 snRNA 的茎环 I 中,在功能上足以促进外显子定义和上游 3'ss 的激活。

相似文献

1
Profiling of cis- and trans-acting factors supporting noncanonical splice site activation.
RNA Biol. 2021 Jan;18(1):118-130. doi: 10.1080/15476286.2020.1798111. Epub 2020 Aug 5.
2
A novel role of U1 snRNP: Splice site selection from a distance.
Biochim Biophys Acta Gene Regul Mech. 2019 Jun;1862(6):634-642. doi: 10.1016/j.bbagrm.2019.04.004. Epub 2019 Apr 28.
3
Ranking noncanonical 5' splice site usage by genome-wide RNA-seq analysis and splicing reporter assays.
Genome Res. 2018 Dec;28(12):1826-1840. doi: 10.1101/gr.235861.118. Epub 2018 Oct 24.
4
Principles and correction of 5'-splice site selection.
RNA Biol. 2022 Jan;19(1):943-960. doi: 10.1080/15476286.2022.2100971.
5
U4/U5/U6 snRNP recognizes the 5' splice site in the absence of U2 snRNP.
Genes Dev. 1994 Aug 15;8(16):1962-73. doi: 10.1101/gad.8.16.1962.
6
A sequential binding mechanism for 5' splice site recognition and modulation for the human U1 snRNP.
Nat Commun. 2024 Oct 10;15(1):8776. doi: 10.1038/s41467-024-53124-5.
7
Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5'ss base pairing in yeast.
Mol Cell. 2005 Jul 1;19(1):65-75. doi: 10.1016/j.molcel.2005.05.006.
10
Recognition of the 5' splice site by the spliceosome.
Acta Biochim Pol. 1998;45(4):869-81.

引用本文的文献

2
Introns and Their Therapeutic Applications in Biomedical Researches.
Iran J Biotechnol. 2023 Oct 1;21(4):e3316. doi: 10.30498/ijb.2023.334488.3316. eCollection 2023 Oct.
3
Understanding Alterations and Expression Profiles in Hematological Malignancies.
Cancers (Basel). 2023 Jul 4;15(13):3491. doi: 10.3390/cancers15133491.
4
A genetic screen in C. elegans reveals roles for KIN17 and PRCC in maintaining 5' splice site identity.
PLoS Genet. 2022 Feb 10;18(2):e1010028. doi: 10.1371/journal.pgen.1010028. eCollection 2022 Feb.
5
Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3.
EMBO J. 2022 Jan 4;41(1):e107640. doi: 10.15252/embj.2021107640. Epub 2021 Nov 15.

本文引用的文献

2
RNA Splicing by the Spliceosome.
Annu Rev Biochem. 2020 Jun 20;89:359-388. doi: 10.1146/annurev-biochem-091719-064225. Epub 2019 Dec 3.
3
Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma.
Nature. 2019 Oct;574(7780):707-711. doi: 10.1038/s41586-019-1650-0. Epub 2019 Oct 9.
4
The U1 spliceosomal RNA is recurrently mutated in multiple cancers.
Nature. 2019 Oct;574(7780):712-716. doi: 10.1038/s41586-019-1651-z. Epub 2019 Oct 9.
5
Combining Engineered U1 snRNA and Antisense Oligonucleotides to Improve the Treatment of a BBS1 Splice Site Mutation.
Mol Ther Nucleic Acids. 2019 Dec 6;18:123-130. doi: 10.1016/j.omtn.2019.08.014. Epub 2019 Aug 16.
7
First estimate of the scale of canonical 5' splice site GT>GC variants capable of generating wild-type transcripts.
Hum Mutat. 2019 Oct;40(10):1856-1873. doi: 10.1002/humu.23821. Epub 2019 Jun 24.
8
Rescue of spinal muscular atrophy mouse models with AAV9-Exon-specific U1 snRNA.
Nucleic Acids Res. 2019 Aug 22;47(14):7618-7632. doi: 10.1093/nar/gkz469.
9
A novel role of U1 snRNP: Splice site selection from a distance.
Biochim Biophys Acta Gene Regul Mech. 2019 Jun;1862(6):634-642. doi: 10.1016/j.bbagrm.2019.04.004. Epub 2019 Apr 28.
10
Ranking noncanonical 5' splice site usage by genome-wide RNA-seq analysis and splicing reporter assays.
Genome Res. 2018 Dec;28(12):1826-1840. doi: 10.1101/gr.235861.118. Epub 2018 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验