Isotope Research Laboratory, College of Life and Basic Sciences, Sichuan Agriculture University, Ya'an 625014, China.
J Exp Bot. 2013 Mar;64(5):1167-78. doi: 10.1093/jxb/ert002. Epub 2013 Jan 23.
Reversible phosphorylation of proteins is a key event in many fundamental cellular processes. Under stressful conditions, many thylakoid membrane proteins in photosynthetic apparatus of higher plants undergo rapid phosphorylation and dephosphorylation in response to environmental changes. CP29 is the most frequently phosphorylated protein among three minor antennae complexes in higher plants. CP29 phosphorylation in dicotyledons has been known for several decades and is well characterized. However, CP29 phosphorylation in monocotyledons is less studied and appears to have a different phosphorylation pattern. In this review, we discuss recent advancements in CP29 phosphorylation and dephosphorylation studies and its physiological significance under environmental stresses in higher plants, especially in the monocotyledonous crops. Physiologically, the phosphorylation of CP29 is likely to be a prerequisite for state transitions and the disassembly of photosystem II supercomplexes, but not involved in non-photochemical quenching (NPQ). CP29 is phosphorylated in monocots exposed to environmental cues, with its subsequent lateral migration from grana stacks to stroma lamellae. However, neither CP29 phosphorylation nor its lateral migration occurs in dicotyledonous plants after drought, cold, or salt stress. Since the molecular mechanisms of differential CP29 phosphorylation under stresses are not fully understood, this review provides insights for future studies regarding the physiological function of CP29 reversible phosphorylation.
蛋白质的可逆磷酸化是许多基本细胞过程中的关键事件。在应激条件下,高等植物光合作用器中的许多类囊体膜蛋白会根据环境变化快速发生磷酸化和去磷酸化。CP29 是高等植物三种次要天线复合物中最常被磷酸化的蛋白质。几十年来,人们已经了解双子叶植物中 CP29 的磷酸化作用,并对其进行了很好的描述。然而,单子叶植物中 CP29 的磷酸化作用研究较少,其磷酸化模式似乎也有所不同。在这篇综述中,我们讨论了 CP29 磷酸化和去磷酸化研究的最新进展及其在高等植物环境胁迫下的生理意义,特别是在单子叶作物中的生理意义。从生理学上讲,CP29 的磷酸化可能是状态转换和光系统 II 超复合物解体的前提条件,但不参与非光化学猝灭(NPQ)。在暴露于环境信号的单子叶植物中,CP29 被磷酸化,随后从粒状堆叠向基质片层横向迁移。然而,在干旱、寒冷或盐胁迫后,双子叶植物中既不会发生 CP29 磷酸化,也不会发生其横向迁移。由于对不同 CP29 磷酸化的分子机制尚不完全了解,因此,本综述为进一步研究 CP29 可逆磷酸化的生理功能提供了参考。