Suppr超能文献

评估社区水平和单物种模型对物种分布和组合组成的预测,这些预测是在 25 年的土地覆盖变化之后得出的。

Assessing community-level and single-species models predictions of species distributions and assemblage composition after 25 years of land cover change.

机构信息

INRA, UMR1201 DYNAFOR, Castanet-Tolosan, France.

出版信息

PLoS One. 2013;8(1):e54179. doi: 10.1371/journal.pone.0054179. Epub 2013 Jan 17.

Abstract

To predict the impact of environmental change on species distributions, it has been hypothesized that community-level models could give some benefits compared to species-level models. In this study we have assessed the performance of these two approaches. We surveyed 256 bird communities in an agricultural landscape in southwest France at the same locations in 1982 and 2007. We compared the ability of CQO (canonical quadratic ordination; a method of community-level GLM) and GLMs (generalized linear models) to i) explain species distributions in 1982 and ii) predict species distributions, community composition and species richness in 2007, after land cover change. Our results show that models accounting for shared patterns between species (CQO) slightly better explain the distribution of rare species than models that ignore them (GLMs). Conversely, the predictive performances were better for GLMs than for CQO. At the assemblage level, both CQO and GLMs overestimated species richness, compared with that actually observed in 2007, and projected community composition was only moderately similar to that observed in 2007. Species richness projections tended to be more accurate in sites where land cover change was more marked. In contrast, the composition projections tended to be less accurate in those sites. Both modelling approaches showed a similar but limited ability to predict species distribution and assemblage composition under conditions of land cover change. Our study supports the idea that our community-level model can improve understanding of rare species patterns but that species-level models can provide slightly more accurate predictions of species distributions. At the community level, the similar performance of both approaches for predicting patterns of assemblage variation suggests that species tend to respond individualistically or, alternatively, that our community model was unable to effectively account for the emergent community patterns.

摘要

为了预测环境变化对物种分布的影响,有人假设群落水平模型相对于物种水平模型可能会有一些优势。在本研究中,我们评估了这两种方法的性能。我们在法国西南部的一个农业景观中,于相同地点调查了 1982 年和 2007 年的 256 个鸟类群落。我们比较了 CQO(典范二次排序;一种群落水平 GLM 的方法)和 GLMs(广义线性模型)的能力:i)解释 1982 年的物种分布,ii)预测 2007 年土地覆盖变化后的物种分布、群落组成和物种丰富度。我们的结果表明,考虑到物种之间共享模式的模型(CQO)比忽略这些模式的模型(GLMs)略微更好地解释稀有物种的分布。相反,GLMs 的预测性能优于 CQO。在集合水平上,CQO 和 GLMs 都高估了物种丰富度,与 2007 年实际观测到的相比,并且预测的群落组成与 2007 年实际观测到的群落组成仅中度相似。在土地覆盖变化更为显著的地点,物种丰富度的预测结果往往更为准确。相比之下,在这些地点,群落组成的预测结果往往不太准确。两种建模方法在土地覆盖变化条件下,都表现出相似但有限的预测物种分布和群落组成的能力。我们的研究支持了这样一种观点,即我们的群落水平模型可以提高对稀有物种模式的理解,但物种水平模型可以对物种分布提供略为准确的预测。在群落水平上,两种方法在预测群落变化模式方面的相似但有限的性能表明,物种倾向于以个体为单位做出响应,或者,我们的群落模型无法有效地解释新兴的群落模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/102a/3547884/150ee230bfff/pone.0054179.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验