Suppr超能文献

[Small interfering RNA-mediated glucose-regulated protein 78 knockdown enhances chemosensitivity of breast cancer cells to cisplatin].

作者信息

Pu Longjian, Huang Yingying, Li Yang, Xu Jincheng, Jiang Chenchen, Liu Hao, Jiang Zhiwen

机构信息

Faculty of Pharmacy, Bengbu Medical College, Bengbu, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2013 Jan;33(1):44-7.

Abstract

OBJECTIVE

To investigate the effect of small interfering RNA-mediated glucose-regulated protein 78 (GRP78) knockdown on the chemosensitivity of breast cancer cells to cisplatin.

METHODS

Human breast cancer cell line MDA-MB-231 was exposed to different doses of cisplatin (0, 1, 2, 4, 8, and 16 µmol/L), and the changes in cell viability were detected using MTT assay. PI/Annexin V staining was used to observe the apoptosis of the cells in response to transfection with a small interfering RNA targeting GRP78 (pSH1Si-GRP78). Western blotting was employed to detect GRP78 expression in pSH1Si- GRP78-transfected cells after exposure to 8 µmol/L cisplatin for 24, 48 and 72 h.

RESULTS

Exposure of the cells to 8 µmol/L cisplatin for 24, 48 and 72 h resulted in a cell survival rate of 83.13%, 54.22% and 35.79%, respectively, but the cell apoptosis rate was only 10.8% at 24 h. Transfection of MDA-MB-231 cells with pSH1Si-GRP78 caused a cell apoptosis rate of 24.6%, which increased to 48.9% in cells with both pSH1Si-GRP78 transfection and cisplatin exposure. Cisplatin exposure caused an initial up-regulation followed then by a down-regulation of GRP78 expression in MDA-MB-231 cells, while pSH1Si-GRP78 transfection produced an obvious down-regulation of GRP78 expression.

CONCLUSIONS

Inhibition of GRP78 expression increases the apoptosis and enhance cisplatin chemosensitivity of breast cancer cells in vitro, suggesting the value of GRP78 as a potential therapeutic target in the clinical treatment of breast cancer.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验