Suppr超能文献

通过指纹识别确定细胞系身份,这是用于短串联重复序列图谱认证的优化资源。

Cell line identity finding by fingerprinting, an optimized resource for short tandem repeat profile authentication.

作者信息

Somaschini Alessio, Amboldi Nadia, Nuzzo Angelo, Scacheri Emanuela, Ukmar Giorgio, Ballinari Dario, Malyszko Jan, Raddrizzani Laura, Landonio Antonella, Gasparri Fabio, Galvani Arturo, Isacchi Antonella, Bosotti Roberta

机构信息

Business Unit Oncology, Nerviano Medical Sciences S.r.l., Nerviano (MI), Italy.

出版信息

Genet Test Mol Biomarkers. 2013 Mar;17(3):254-9. doi: 10.1089/gtmb.2012.0359. Epub 2013 Jan 28.

Abstract

The generation of biological data on wide panels of tumor cell lines is recognized as a valid contribution to the cancer research community. However, research laboratories can benefit from this knowledge only after the identity of each individual cell line used in the experiments is verified and matched to external sources. Among the methods employed to assess cell line identity, DNA fingerprinting by profiling Short Tandem Repeat (STR) at variable loci has become the method of choice. However, the analysis of cancer cell lines is sometimes complicated by their intrinsic genetic instability, resulting in multiple allele calls per locus. In addition, comparison of data across different sources must deal with the heterogeneity of published profiles both in terms of number and type of loci used. The aim of this work is to provide the scientific community a homogeneous reference dataset for 300 widely used tumor cell lines, profiled in parallel on 16 loci. This large dataset is interfaced with an in-house developed software tool for Cell Line Identity Finding by Fingerprinting (CLIFF), featuring an original identity score calculation, which facilitates the comparison of STR profiles from different sources and enables accurate calls when multiple loci are present. CLIFF additionally allows import and query of proprietary STR profile datasets.

摘要

在广泛的肿瘤细胞系面板上生成生物学数据被认为是对癌症研究界的一项有效贡献。然而,研究实验室只有在验证实验中使用的每个细胞系的身份并将其与外部来源匹配后,才能从这些知识中受益。在用于评估细胞系身份的方法中,通过分析可变位点的短串联重复序列(STR)进行DNA指纹识别已成为首选方法。然而,癌细胞系的分析有时会因其固有的遗传不稳定性而变得复杂,导致每个位点出现多个等位基因调用。此外,跨不同来源的数据比较必须处理已发表图谱在使用位点的数量和类型方面的异质性。这项工作的目的是为科学界提供一个针对300种广泛使用的肿瘤细胞系的同质参考数据集,这些细胞系在16个位点上进行了并行分析。这个大型数据集与一个内部开发的用于通过指纹识别查找细胞系身份的软件工具(CLIFF)相连接,该工具具有独特的身份评分计算功能,有助于比较来自不同来源的STR图谱,并在存在多个位点时进行准确调用。CLIFF还允许导入和查询专有STR图谱数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验