Laboratory of Virus Control, Institute for Virus Research, Kyoto University, 53 Shogoin Kawaramachi, Kyoto 606-8507, Japan.
Int J Biochem Cell Biol. 2013 Apr;45(4):908-15. doi: 10.1016/j.biocel.2013.01.015. Epub 2013 Jan 26.
T-20 (enfuvirtide) resistance is caused by the N43D primary resistance mutation at its presumed binding site at the N-terminal heptad repeat (N-HR) of gp41, accompanied by the S138A secondary mutation at the C-terminal HR of gp41 (C-HR). We have discovered that modifying T-20 to include S138A (T-20S138A) allows it to efficiently block wild-type and T20-resistant viruses, by a mechanism that involves improved binding of T-20S138A to the N-HR that contains the N43D primary mutation. To determine how HIV-1 in turn escapes T-20S138A we used a dose escalation method to select T-20S138A-resistant HIV-1 starting with either wild-type (HIV-1WT) or T-20-resistant (HIV-1N43D/S138A) virus. We found that when starting with WT background, I37N and L44M emerged in the N-HR of gp41, and N126K in the C-HR. However, when starting with HIV-1N43D/S138A, L33S and I69L emerged in N-HR, and E137K in C-HR. T-20S138A-resistant recombinant HIV-1 showed cross-resistance to other T-20 derivatives, but not to C34 derivatives, suggesting that T-20S138A suppressed HIV-1 replication by a similar mechanism to T-20. Furthermore, E137K enhanced viral replication kinetics and restored binding affinity with N-HR containing N43D, indicating that it acts as a secondary, compensatory mutation. We therefore introduced E137K into T-20S138A (T-20E137K/S138A) and revealed that T-20E137K/S138A moderately suppressed replication of T-20S138A-resistant HIV-1. T-20E137K/S138A retained activity to HIV-1 without L33S, which seems to be a key mutation for T-20 derivatives. Our data demonstrate that secondary mutations can be consistently used for the design of peptide inhibitors that block replication of HIV resistant to fusion inhibitors.
T-20(恩夫韦肽)耐药性是由 N43D 原发性耐药突变引起的,该突变位于 gp41 的 N 端七肽重复(N-HR)的假定结合位点,同时伴有 gp41 的 C 端 HR(C-HR)中的 S138A 次要突变。我们发现,通过改进 T-20 与包含 N43D 原发性突变的 N-HR 的结合,将 T-20 修饰为包含 S138A(T-20S138A)可以有效地阻止野生型和 T20 耐药病毒。为了确定 HIV-1 如何反过来逃避 T-20S138A,我们使用剂量递增法从野生型(HIV-1WT)或 T-20 耐药(HIV-1N43D/S138A)病毒开始选择 T-20S138A 耐药的 HIV-1。我们发现,当以 WT 为背景时,gp41 的 N-HR 中出现了 I37N 和 L44M,而 C-HR 中出现了 N126K。然而,当从 HIV-1N43D/S138A 开始时,N-HR 中出现了 L33S 和 I69L,而 C-HR 中出现了 E137K。T-20S138A 耐药重组 HIV-1 对其他 T-20 衍生物表现出交叉耐药性,但对 C34 衍生物没有耐药性,这表明 T-20S138A 通过与 T-20 相似的机制抑制 HIV-1 复制。此外,E137K 增强了病毒复制动力学,并恢复了与含有 N43D 的 N-HR 的结合亲和力,表明它是一种次要的补偿突变。因此,我们将 E137K 引入 T-20S138A(T-20E137K/S138A)中,并揭示 T-20E137K/S138A 适度抑制了 T-20S138A 耐药 HIV-1 的复制。T-20E137K/S138A 对不含 L33S 的 HIV-1 仍具有活性,这似乎是 T-20 衍生物的关键突变。我们的数据表明,二级突变可用于设计肽抑制剂,以阻止对融合抑制剂耐药的 HIV 的复制。