Department of Tumor Genetics and Biology, Graduate school of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
Mol Cell Proteomics. 2013 May;12(5):1377-94. doi: 10.1074/mcp.M112.024802. Epub 2013 Jan 28.
Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural abnormalities are, in part, caused by up-regulation of dynein IC2-GR-COX-1 signaling, which may be a novel therapeutic target for NF1.
神经纤维瘤病 1 型(NF1)肿瘤抑制基因产物神经纤维瘤蛋白在 Ras-GAP 中发挥部分作用,尽管其缺失与 NF1 患者的神经元异常有关,但它的确切细胞功能仍不清楚。为了研究 NF1 发病机制的分子机制,我们制备了 NF1 基因敲低(KD)PC12 细胞,作为 NF1 疾病模型,并使用独特的综合蛋白质组学方法(包括 iTRAQ、2D-DIGE 和 DNA 微阵列)分析其分子(基因和蛋白质)表达谱,使用综合蛋白质和基因表达分析图(iPEACH)。在 NGF 处理后表现出异常神经元分化的 NF1-KD PC12 细胞中,在 iPEACH 中定量鉴定和列出的 3198 种分子中,提取了 97 种随时间连续上调或下调的分子。通路和网络分析进一步表明,上调蛋白集中钙信号和糖皮质激素受体(GR)的转录调控过度表达,而下调蛋白集中神经系统发育过度表达。在 NF1-KD 细胞中,我们还研究了新发现的上调网络“动力蛋白 IC2-GR-COX-1 信号”。验证研究证实,NF1 敲低诱导动力蛋白 IC2 异构体的剪接和磷酸化模式改变、核 GR 的上调和积累以及 NGF 处理细胞中 COX-1 表达增加。此外,在 NF1-KD 细胞中观察到的神经突回缩表型通过动力蛋白 IC2-C 异构体和 COX-1 的敲低得到显著恢复。此外,动力蛋白 IC2 siRNA 显著抑制 GR 的核易位和积累以及 COX-1 表达的上调。这些结果表明,在这种 NF1 疾病模型中,动力蛋白 IC2 上调 GR 核易位和积累,并随后导致 COX-1 表达增加。我们结合多种方法的综合蛋白质组学策略表明,NF1 相关的神经异常部分是由动力蛋白 IC2-GR-COX-1 信号的上调引起的,这可能是 NF1 的一个新的治疗靶点。