Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Neurosci. 2010 Apr 21;30(16):5579-89. doi: 10.1523/JNEUROSCI.3994-09.2010.
Individuals with the neurofibromatosis type 1 (NF1) inherited cancer syndrome exhibit neuronal dysfunction that predominantly affects the CNS. In this report, we demonstrate a unique vulnerability of CNS neurons, but not peripheral nervous system (PNS) neurons, to reduced Nf1 gene expression. Unlike dorsal root ganglion neurons, Nf1 heterozygous (Nf1+/-) hippocampal and retinal ganglion cell (RGC) neurons have decreased growth cone areas and neurite lengths, and increased apoptosis compared to their wild-type counterparts. These abnormal Nf1+/- CNS neuronal phenotypes do not reflect Ras pathway hyperactivation, but rather result from impaired neurofibromin-mediated cAMP generation. In this regard, elevating cAMP levels with forskolin or rolipram treatment, but not MEK (MAP kinase kinase) or PI3-K (phosphatidylinositol 3-kinase) inhibition, reverses these abnormalities to wild-type levels in vitro. In addition, Nf1+/- CNS, but not PNS, neurons exhibit increased apoptosis in response to excitotoxic or oxidative stress in vitro. Since children with NF1-associated optic gliomas often develop visual loss and Nf1 genetically engineered mice with optic glioma exhibit RGC neuronal apoptosis in vivo, we further demonstrate that RGC apoptosis resulting from optic glioma in Nf1 genetically engineered mice is attenuated by rolipram treatment in vivo. Similar to optic glioma-induced RGC apoptosis, the increased RGC neuronal death in Nf1+/- mice after optic nerve crush injury is also attenuated by rolipram treatment in vivo. Together, these findings establish a distinctive role for neurofibromin in CNS neurons with respect to vulnerability to injury, define a CNS-specific neurofibromin intracellular signaling pathway responsible for neuronal survival, and lay the foundation for future neuroprotective glioma treatment approaches.
个体患有神经纤维瘤病 1 型(NF1)遗传性癌症综合征,表现出主要影响中枢神经系统(CNS)的神经元功能障碍。在本报告中,我们证明了 CNS 神经元对 Nf1 基因表达降低的独特易感性,而外周神经系统(PNS)神经元则没有。与背根神经节神经元不同,Nf1 杂合子(Nf1+/-)海马和视网膜神经节细胞(RGC)神经元的生长锥面积和神经突长度减小,并且与野生型相比凋亡增加。这些异常的 Nf1+/-CNS 神经元表型不反映 Ras 途径的过度激活,而是由于神经纤维瘤蛋白介导的 cAMP 生成受损所致。在这方面,用 forskolin 或 rolipram 处理而不是用 MEK(MAP 激酶激酶)或 PI3-K(磷脂酰肌醇 3-激酶)抑制来升高 cAMP 水平,可在体外将这些异常逆转至野生型水平。此外,Nf1+/-CNS,但不是 PNS,神经元在体外对兴奋性毒性或氧化应激表现出增加的凋亡。由于 NF1 相关视神经胶质瘤患儿常发生视力丧失,并且具有视神经胶质瘤的 Nf1 基因工程小鼠体内存在 RGC 神经元凋亡,因此我们进一步证明,在体内 rolipram 治疗可减轻 Nf1 基因工程小鼠视神经胶质瘤引起的 RGC 凋亡。与视神经胶质瘤诱导的 RGC 凋亡相似,视神经损伤后 Nf1+/-小鼠中 RGC 神经元死亡的增加也可通过体内 rolipram 治疗减轻。综上所述,这些发现确立了神经纤维瘤蛋白在 CNS 神经元易受损伤方面的独特作用,确定了负责神经元存活的 CNS 特异性神经纤维瘤蛋白细胞内信号通路,并为未来的神经保护胶质瘤治疗方法奠定了基础。