Suppr超能文献

神经营养因子在脊髓可塑性和运动中的作用。

Role of neurotrophins in spinal plasticity and locomotion.

机构信息

VA Medical Center, Research Service Bld. 62, 79 Middleville Rd, Northport, NY 11768, USA.

出版信息

Curr Pharm Des. 2013;19(24):4509-16. doi: 10.2174/13816128113199990378.

Abstract

Synaptic transmission through descending motor pathways to lumbar motoneurons and then to leg muscles is essential for walking in humans and rats. Spinal cord injury (SCI), even when incomplete, results in diminished transmission to motoneurons and very limited recovery of motor function. Neurotrophins have emerged as essential molecules known to promote cell survival and support anatomical reorganization in damaged spinal cord. This review will summarize the evidence implicating the role of neurotrophins in synaptic plasticity in both undamaged and damaged spinal cord, with special emphasis on the potential for neurotrophins to strengthen synaptic connections to motoneurons in support of the application of neurotrophins for recovery of locomotor function after SCI. An important consideration related to therapeutic use of neurotrophins is the successful delivery of these molecules. Prolonged delivery of neurotrophins to the spinal cord of adult mammals has recently become possible through advances in biotechnology. Fibroblasts engineered to secrete neurotrophins and gene transfer of neurotrophins via recombinant viral vectors are among the most promising therapeutic transgene delivery systems for safe and effective neurotrophin delivery. Administration of neurotrophins to the spinal cord using these delivery systems was found to enhance both anatomical and synaptic plasticity and improve functional recovery after SCI. The findings summarized here indicate that neurotrophins have translational research potential for SCI repair, most likely as an essential component of combination therapy.

摘要

下行运动通路通过突触传递到腰椎运动神经元,然后传递到腿部肌肉,这对人类和大鼠的行走至关重要。脊髓损伤(SCI),即使不完全,也会导致运动神经元的传递减少,运动功能的恢复非常有限。神经营养因子已成为促进受损脊髓中细胞存活和支持解剖结构重组的重要分子。这篇综述将总结神经营养因子在未受损和受损脊髓中的突触可塑性中的作用的证据,特别强调神经营养因子增强运动神经元突触连接的潜力,以支持应用神经营养因子来恢复 SCI 后的运动功能。与神经营养因子治疗应用相关的一个重要考虑因素是这些分子的成功传递。通过生物技术的进步,最近已经可以实现神经营养因子在成年哺乳动物脊髓中的长期传递。通过重组病毒载体进行基因转移的神经营养因子,以及工程化分泌神经营养因子的成纤维细胞,是最有前途的治疗性转基因传递系统之一,可安全有效地传递神经营养因子。通过这些传递系统将神经营养因子施用于脊髓,发现可增强解剖和突触可塑性,并改善 SCI 后的功能恢复。这里总结的发现表明,神经营养因子具有 SCI 修复的转化研究潜力,很可能作为联合治疗的重要组成部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验