Suppr超能文献

理解和控制纳米孔隙形成,以提高双金属燃料电池催化剂的稳定性。

Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts.

机构信息

The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technical University Berlin, 10623 Berlin, Germany.

出版信息

Nano Lett. 2013 Mar 13;13(3):1131-8. doi: 10.1021/nl304488q. Epub 2013 Feb 12.

Abstract

Nanoporosity is a frequently reported phenomenon in bimetallic particle ensembles used as electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells. It is generally considered a favorable characteristic, because it increases the catalytically active surface area. However, the effect of nanoporosity on the intrinsic activity and stability of a nanoparticle electrocatalyst has remained unclear. Here, we present a facile atmosphere-controlled acid leaching technique to control the formation of nanoporosity in Pt-Ni bimetallic nanoparticles. By statistical analysis of particle size, composition, nanoporosity, and atomic-scale core-shell fine structures before and after electrochemical stability test, we uncover that nanoporosity formation in particles larger than ca. 10 nm is intrinsically tied to a drastic dissolution of Ni and, as a result of this, a rapid drop in intrinsic catalytic activity during ORR testing, translating into severe catalyst performance degradation. In contrast, O2-free acid leaching enabled the suppression of nanoporosity resulting in more solid core-shell particle architectures with thin Pt-enriched shells; surprisingly, such particles maintained high intrinsic activity and improved catalytic durability under otherwise identical ORR tests. On the basis of these findings, we suggest that catalytic stability could further improve by controlling the particle size below ca. 10 nm to avoid nanoporosity. Our findings provide an explanation for the degradation of bimetallic particle ensembles and show an easy to implement pathway toward more durable fuel cell cathode catalysts.

摘要

纳米多孔性是用于燃料电池中氧还原反应(ORR)的双金属颗粒混合物作为电催化剂的常见现象。通常认为这是一种有利的特性,因为它增加了催化活性表面积。然而,纳米多孔性对纳米颗粒电催化剂的本征活性和稳定性的影响仍不清楚。在这里,我们提出了一种简便的气氛控制酸浸技术来控制 Pt-Ni 双金属纳米颗粒中纳米多孔性的形成。通过对电化学稳定性测试前后的粒径、组成、纳米多孔性和原子级核壳精细结构进行统计分析,我们发现大于约 10nm 的颗粒中纳米多孔性的形成本质上与 Ni 的剧烈溶解有关,结果是在 ORR 测试过程中本征催化活性迅速下降,导致严重的催化剂性能退化。相比之下,无氧酸浸可抑制纳米多孔性的形成,从而形成更坚固的核壳颗粒结构,具有较薄的 Pt 富集壳;令人惊讶的是,在其他条件相同的 ORR 测试下,这些颗粒保持了较高的本征活性和改善的催化耐久性。基于这些发现,我们建议通过控制粒径低于约 10nm 来避免纳米多孔性,从而进一步提高催化稳定性。我们的发现为双金属颗粒混合物的降解提供了解释,并展示了一种实现更耐用的燃料电池阴极催化剂的简便实施途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验