School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia.
Dalton Trans. 2013 Apr 7;42(13):4686-94. doi: 10.1039/c3dt32775b.
A series of polypyridyl-ruthenium(II) and -iridium(III) complexes that contain labile chlorido ligands, {M(tpy)Cl}(2){μ-bb(n)} {Cl-Mbb(n); where M = Ru or Ir; tpy = 2,2':6',2''-terpyridine; and bb(n) = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane (n = 7, 12 or 16)} have been synthesised and their potential as antimicrobial agents examined. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of the series of metal complexes against four strains of bacteria - Gram positive Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA), and Gram negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) - have been determined. All the ruthenium complexes were highly active and bactericidal. In particular, the Cl-Rubb(12) complex showed excellent activity against all bacterial cell lines with MIC values of 1 μg mL(-1) against the Gram positive bacteria and 2 and 8 μg mL(-1) against E. coli and P. aeruginosa, respectively. The corresponding iridium(III) complexes also showed significant antimicrobial activity in terms of MIC values; however and surprisingly, the iridium complexes were bacteriostatic rather than bactericidal. The inert iridium(III) complex, {Ir(phen)(2)}(2){μ-bb(12)} {where phen = 1,10-phenanthroline) exhibited no antimicrobial activity, suggesting that it could not cross the bacterial membrane. The mononuclear model complex, [Ir(tpy)(Me(2)bpy)Cl]Cl(2) (where Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine), was found to aquate very rapidly, with the pK(a) of the iridium-bound water in the corresponding aqua complex determined to be 6.0. This suggests the dinuclear complexes Ir(tpy)Cl}(2){μ-bb(n)} aquate and deprotonate rapidly and enter the bacterial cells as 4+ charged hydroxo species.
一系列含有不稳定氯配体的聚吡啶钌(II)和铱(III)配合物,{M(tpy)Cl}(2){μ-bb(n)} {Cl-Mbb(n); 其中 M = Ru 或 Ir; tpy = 2,2':6',2''-三联吡啶; bb(n) = 双[4(4'-甲基-2,2'-联吡啶)]-1,n-链烷烃 (n = 7,12 或 16)} 已被合成,并研究了它们作为抗菌剂的潜力。该系列金属配合物对四种细菌菌株-革兰氏阳性金黄色葡萄球菌 (S. aureus) 和耐甲氧西林金黄色葡萄球菌 (MRSA),以及革兰氏阴性大肠杆菌 (E. coli) 和铜绿假单胞菌 (P. aeruginosa)-的最低抑菌浓度 (MIC) 和最低杀菌浓度 (MBC) 已被确定。所有的钌配合物都具有高度的活性和杀菌性。特别是,Cl-Rubb(12) 配合物对所有细菌细胞系表现出极好的活性,对革兰氏阳性菌的 MIC 值为 1 μg mL(-1),对大肠杆菌和铜绿假单胞菌的 MIC 值分别为 2 和 8 μg mL(-1)。相应的铱(III)配合物在 MIC 值方面也表现出显著的抗菌活性;然而,令人惊讶的是,铱配合物是抑菌而不是杀菌。惰性的铱(III)配合物,{Ir(phen)(2)}(2){μ-bb(12)} {其中 phen = 1,10-菲咯啉) 表现出没有抗菌活性,表明它不能穿过细菌膜。单核模型配合物,[Ir(tpy)(Me(2)bpy)Cl]Cl(2) (其中 Me(2)bpy = 4,4'-二甲基-2,2'-联吡啶),被发现非常迅速地水合,相应的水合配合物中铱结合水的 pK(a) 被确定为 6.0。这表明二核配合物Ir(tpy)Cl}(2){μ-bb(n)} 迅速水合并脱质子,并作为 4+ 价的羟物种进入细菌细胞。