O. V. Lounasmaa Laboratory, Aalto University School of Science, P.O. Box 15100, FI-00076 AALTO, Espoo, Finland.
Nat Commun. 2013;4:1420. doi: 10.1038/ncomms2383.
Superconducting circuits with Josephson junctions are promising candidates for developing future quantum technologies. Of particular interest is to use these circuits to study effects that typically occur in complex condensed-matter systems. Here we employ a superconducting quantum bit--a transmon--to perform an analogue simulation of motional averaging, a phenomenon initially observed in nuclear magnetic resonance spectroscopy. By modulating the flux bias of a transmon with controllable pseudo-random telegraph noise we create a stochastic jump of its energy level separation between two discrete values. When the jumping is faster than a dynamical threshold set by the frequency displacement of the levels, the initially separate spectral lines merge into a single, narrow, motional-averaged line. With sinusoidal modulation a complex pattern of additional sidebands is observed. We show that the modulated system remains quantum coherent, with modified transition frequencies, Rabi couplings, and dephasing rates. These results represent the first steps towards more advanced quantum simulations using artificial atoms.
超导电路中的约瑟夫森结是开发未来量子技术的有前途的候选者。特别感兴趣的是利用这些电路来研究通常出现在复杂凝聚态系统中的效应。在这里,我们使用超导量子比特——一个超导量子比特——来模拟运动平均,这是在核磁共振光谱中最初观察到的现象。通过用可控的伪随机电报噪声调制超导量子比特的磁通偏置,我们在两个离散值之间创建了其能级分离的随机跳跃。当跳跃速度快于由能级位移设定的动态阈值时,最初分开的谱线合并成一个单一的、狭窄的、运动平均的线。正弦调制会观察到复杂的附加边带模式。我们表明,调制系统仍然保持量子相干,具有修改后的跃迁频率、拉比耦合和退相率。这些结果是使用人工原子进行更高级的量子模拟的第一步。