Willsch Dennis, Rieger Dennis, Winkel Patrick, Willsch Madita, Dickel Christian, Krause Jonas, Ando Yoichi, Lescanne Raphaël, Leghtas Zaki, Bronn Nicholas T, Deb Pratiti, Lanes Olivia, Minev Zlatko K, Dennig Benedikt, Geisert Simon, Günzler Simon, Ihssen Sören, Paluch Patrick, Reisinger Thomas, Hanna Roudy, Bae Jin Hee, Schüffelgen Peter, Grützmacher Detlev, Buimaga-Iarinca Luiza, Morari Cristian, Wernsdorfer Wolfgang, DiVincenzo David P, Michielsen Kristel, Catelani Gianluigi, Pop Ioan M
Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany.
IQMT, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.
Nat Phys. 2024;20(5):815-821. doi: 10.1038/s41567-024-02400-8. Epub 2024 Feb 14.
Approaches to developing large-scale superconducting quantum processors must cope with the numerous microscopic degrees of freedom that are ubiquitous in solid-state devices. State-of-the-art superconducting qubits employ aluminium oxide (AlO) tunnel Josephson junctions as the sources of nonlinearity necessary to perform quantum operations. Analyses of these junctions typically assume an idealized, purely sinusoidal current-phase relation. However, this relation is expected to hold only in the limit of vanishingly low-transparency channels in the AlO barrier. Here we show that the standard current-phase relation fails to accurately describe the energy spectra of transmon artificial atoms across various samples and laboratories. Instead, a mesoscopic model of tunnelling through an inhomogeneous AlO barrier predicts percent-level contributions from higher Josephson harmonics. By including these in the transmon Hamiltonian, we obtain orders of magnitude better agreement between the computed and measured energy spectra. The presence and impact of Josephson harmonics has important implications for developing AlO-based quantum technologies including quantum computers and parametric amplifiers. As an example, we show that engineered Josephson harmonics can reduce the charge dispersion and associated errors in transmon qubits by an order of magnitude while preserving their anharmonicity.
开发大规模超导量子处理器的方法必须应对固态器件中普遍存在的众多微观自由度。最先进的超导量子比特采用氧化铝(AlO)隧道约瑟夫森结作为执行量子操作所需的非线性源。对这些结的分析通常假设理想化的、纯正弦电流 - 相位关系。然而,这种关系预计仅在AlO势垒中透明度极低的通道极限情况下成立。在这里,我们表明标准电流 - 相位关系无法准确描述跨各种样品和实验室的transmon人造原子的能谱。相反,通过非均匀AlO势垒的隧穿介观模型预测了更高约瑟夫森谐波的百分比级贡献。通过将这些纳入transmon哈密顿量,我们在计算的和测量的能谱之间获得了好几个数量级的更好一致性。约瑟夫森谐波的存在及其影响对开发包括量子计算机和参量放大器在内的基于AlO的量子技术具有重要意义。例如,我们表明,设计的约瑟夫森谐波可以在保持transmon量子比特非谐性的同时,将其电荷色散和相关误差降低一个数量级。