Suppr超能文献

配体功能化及其对微孔金属-有机骨架中 CO2 吸附的影响。

Ligand functionalization and its effect on CO2 adsorption in microporous metal-organic frameworks.

机构信息

School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou, 510641, P.R. China.

出版信息

Chem Asian J. 2013 Apr;8(4):778-85. doi: 10.1002/asia.201201081. Epub 2013 Jan 30.

Abstract

We report two new 3D structures, [Zn3(bpdc)3(2,2'-dmbpy)] (DMF)x(H2O)y (1) and [Zn3(bpdc)3(3,3'-dmbpy)]·(DMF)4(H2O)0.5 (2), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4·(H2O) (3) (bpdc=biphenyl-4,4'-dicarboxylic acid; z,z'-dmbpy=z,z'-dimethyl-4,4'-bipyridine; bpy=4,4'-bipyridine). Single-crystal X-ray diffraction analysis indicates that 2 is isostructural to 3, and the power X-ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3. Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2'- or 3,3'-dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas-adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1' (guest-free 1) indicate significant enhancement in CO2 uptake, whereas for 2' (guest-free 2) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Q(st)), and the detraction due to the reduction of surface area and pore volume. For 1', the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3' (guest-free 3). For 2', the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3'. IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl-functionalized π moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.

摘要

我们通过对[Zn3(bpdc)3(bpy)](DMF)4·(H2O)(3)(bpdc=biphenyl-4,4'-dicarboxylic acid;z,z'-dmbpy=z,z'-dimethyl-4,4'-bipyridine;bpy=4,4'-bipyridine)中的支柱配体进行甲基化,得到了两个新的 3D 结构,[Zn3(bpdc)3(2,2'-dmbpy)](DMF)x(H2O)y(1)和[Zn3(bpdc)3(3,3'-dmbpy)]·(DMF)4(H2O)0.5(2)。单晶 X 射线衍射分析表明,2 与 3 具有同构结构,粉末 X 射线衍射(PXRD)研究表明,1 与 2 和 3 具有非常相似的骨架。1 和 2 都是由 Zn3(COO)6 次级构建单元(SBUs)和 2,2'-或 3,3'-dmbpy 作为支柱配体组成的 3D 多孔结构。热重分析(TGA)和 PXRD 研究表明,这两种化合物都具有高热稳定性和水稳定性。气体吸附研究表明,将甲基引入 bpy 配体中会导致表面积和孔体积减少,从而使两种化合物对 H2 的吸附量减少。然而,用 1'(无客体 1)进行 CO2 吸附实验表明,CO2 的吸附量显著增加,而对于 2'(无客体 2),吸附量减少。这些结果表明,甲基化带来了两种相反的竞争效应:由于 CO2 吸附的等离热增加而增强,以及由于表面积和孔体积减少而减弱。对于 1',增强效应占主导地位,导致 CO2 的吸附量明显高于其母体化合物 3'(无客体 3)。对于 2',削弱效应占主导地位,从而导致相对于其母体结构 3',CO2 的吸附量减少。IR 和拉曼光谱研究也提供了 CO2 与甲基化的π部分之间存在强烈相互作用的证据。此外,所有化合物都表现出对 CO2 与其他小分子气体(包括 CH4、CO、N2 和 O2)的高分离能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验